
VOL. E101-A NO. 12
DECEMBER 2018

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.12 DECEMBER 2018
2231

PAPER Special Section on VLSI Design and CAD Algorithms

Function Design for Minimum Multiple-Control Toffoli Circuits of
Reversible Adder/Subtractor Blocks and Arithmetic Logic Units

Md Belayet ALI†a), Nonmember, Takashi HIRAYAMA†, Katsuhisa YAMANAKA†,
and Yasuaki NISHITANI†, Members

SUMMARY In this paper, we propose a design of reversible
adder/subtractor blocks and arithmetic logic units (ALUs). The main con-
cept of our approach is different from that of the existing related studies;
we emphasize the function design. Our approach of investigating the re-
versible functions includes (a) the embedding of irreversible functions into
incompletely-specified reversible functions, (b) the operation assignment,
and (c) the permutation of function outputs. We give some extensions of
these techniques for further improvements in the design of reversible func-
tions. The resulting reversible circuits are smaller than that of the existing
design in terms of the number of multiple-control Toffoli gates. To evaluate
the quantum cost of the obtained circuits, we convert the circuits to reduced
quantum circuits for experiments. The results also show the superiority of
our realization of adder/subtractor blocks and ALUs in quantum cost.
key words: reversible function, reversible adder/subtractor, reversible
arithmetic logic unit, incompletely-specified function, operation assign-
ment, quantum cost, multiple-control Toffoli

1. Introduction

The arithmetic logic unit is a key element in programmable
computing devices. Several designs of ALUs were in-
vestigated based on reversible logic [1]–[5]. Some re-
searchers also proposed new reversible gates to design ALU
blocks [2]. In the design of ALUs, an adder/subtractor block
is another important key elements. A faster adder/subtractor
block will increase the efficiency of the ALU performance as
well as that of the whole system. Recently, several designs
have been proposed to construct reversible adder/subtractor
blocks [6]–[16]. The objective of the researchers was to
design ALUs or adder/subtractor blocks that depict higher
performance and lower-power consumption than that of the
existing system. Reversible computing is generally con-
sidered to be an unconventional form of computing, which
has drawn considerable attention from researchers in or-
der to design low-power computing devices [17], [18]. It
is, therefore, important to have fast reversible ALUs and
adder/subtractor blocks. Their performance could affect the
efficiency of the whole system.

Recently, several studies have investigated the re-
versible circuit synthesis [19]–[22]. Figure 1 is an overview
of the design flow of reversible synthesis. The primary goal
for designing cost-efficient reversible circuits is to minimize

Manuscript received March 13, 2018.
Manuscript revised June 20, 2018.
†The authors are with the Department of Electrical Engineer-

ing and Computer Science, Iwate University, Morioka-shi, 020-
8551 Japan.

a) E-mail: belayet@kono.cis.iwate-u.ac.jp
DOI: 10.1587/transfun.E101.A.2231

Design of Reversible Functions

↓

Reversible Circuit Synthesis

↓

Quantum Circuit Synthesis

Fig. 1 Overview of the design flow of reversible synthesis.

the cost of the circuits in terms of a few metrics such as the
number of constant inputs, garbage outputs [23], [24], re-
versible gates [25], and the quantum cost (QC) [26]–[29].
Constant inputs are lines that exist on the input side with a
certain fixed logical value, either 0 or 1, whereas garbage
outputs exist on the output side and do not perform any use-
ful operation to facilitate further computations. Both the
constant inputs and garbage outputs are simply added to
the circuit to maintain reversibility at the design stage of re-
versible functions. From the published studies, we observe
that multiple-control Toffoli (MCT) gates can be extensively
used to synthesize a reversible circuit [30]–[32]. Therefore,
the number of MCT gates is generally used as the cost metric
during the stage of reversible circuit synthesis. A reversible
circuit is further decomposed into cascades of elementary
quantum gates [33]–[35], which is called a quantum circuit.
At the stage of the quantum circuit synthesis, the QC is the
most common cost metric, which is measured by counting
the number of elementary quantum gates required to imple-
ment the quantum circuit.

In this paper, we adopt the MCT gate library to de-
sign reversible adder/subtractor and simple ALU circuits.
According to our knowledge, no optimization of reversible
full adder/subtractor circuits using only the MCT gate li-
brary with the lowest possible number of working lines, con-
stant inputs, and garbage outputs has been proposed even
though the MCT gate library is the most fundamental and
widely-used gate library for the synthesis of reversible cir-
cuits. Rangaraju et al. [12] have proposed three designs for
reversible half and full adder/subtractor circuits using a dif-
ferent gate library including Feynman [36], Fredkin, TR,
and Peres gates. In some of the cases, their proposed de-
signs required five or more working lines, a large number of
reversible gates, constant inputs, and garbage outputs with
a high QC. Moghimi et al. [16] proposed a new 4x4 univer-
sal reversible gate as a cost-efficient full adder/subtractor in
terms of the reversible and quantum metrics. They showed

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

2232
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.12 DECEMBER 2018

some improvement over the existing full adder/subtractor
design by comparing their design in terms of the number
of reversible gates, garbage outputs, constant inputs and the
QC. Sultan et al. [5] have proposed a full adder/subtractor
circuit using Feynman and Peres gates, which showed the
improvement over the previous work [12] in terms of the re-
versible gate counts, the garbage outputs, the constant in-
puts and the QC. Gupta et al. [37] proposed a reversible
LU with eight operations using five inputs. The Mini-ALU
reported in Revlib [38] can perform four operations: OR,
AND, ADD, Identity. Both ALUs were implemented with
the MCT gate library. As we have seen in Fig. 1, the de-
sign flow of reversible synthesis consists of three stages. We
found that related works for the reversible adder/subtractors
and ALUs lacked the analysis on the level of the reversible
function design. Our approach is to investigate the function
design thoroughly to improve the reversible circuits. The
minimization problem for MCT circuits is also extended ac-
cordingly. As a result, we obtain the minimum MCT circuits
of the adder/subtractors and the ALUs. We also give the
quantum circuits of our reversible adder/subtractors. There
were very few works that proposed the quantum circuit im-
plementation for the adder/subtractors while obtaining the
quantum circuit is the goal of the reversible synthesis.

This paper is organized as follows. The next section
outlines some preliminaries of reversible and quantum cir-
cuits. In Sect. 3, we propose design techniques specific
to the reversible functions of adder/subtractor blocks and
ALUs. Those minimum MCT circuits and reduced quan-
tum circuits are given in Sects. 4 and 5, respectively. We
conclude in Sect. 6.

2. Preliminaries

This section introduces necessary terminology of the re-
versible and quantum circuits.

2.1 Reversible Functions

The function f (x1, x2, ..., xn) of n Boolean variables is called
reversible if the number of outputs is equal to that of inputs
and if any input pattern can be mapped to a unique output
pattern [19], [23]. The reversibility is valued since no in-
formation is lost in the logic operations. Among the con-
ventional logic operations such as AND, OR, and NOT, the
NOT operation is reversible; it has a one-to-one correspon-
dence between the input and output. The AND and OR op-
erations are not reversible; they give a single output for two
inputs. To convert the irreversible function to a reversible
one, garbage outputs are used to distinguish equal output
patterns, and constant inputs are added to equalize the num-
ber of inputs and outputs of the function.

2.2 Reversible Gates

Several reversible gates have been proposed during the last
few decades, from which the Toffoli, Peres, Feynman, and

Fig. 2 MCT gate library (a) NOT, (b) CNOT, (c) Toffoli.

Fig. 3 Reversible circuit.

Fredkin are conventionally used to synthesize reversible cir-
cuits. Recently, researchers have proposed different gate
libraries such as MCT; multiple-control Fredkin (MCF);
Peres (P); NOT, CNOT, and Toffoli (NCT); multiple-control
Toffoli and Peres (MCT+P); multiple-control Toffoli and
multiple-control Fredkin (MCT+MCF). Among them, the
MCT gate library is most widely used for reversible logic
synthesis. For this reason, we use the MCT gate library to
design reversible circuit.

Definition 1: A multiple-control Toffoli (MCT) gate has
(k − 1) control lines {x1, x2, . . . , xk−1} and one target line xk,
whose function is a mapping from (x1, x2, . . . , xk−1, xk) to
(x1, x2, . . . , xk−1, (x1x2 · · · xk−1) ⊕ xk). In the case k = 1, the
gate maps x1 to 1 ⊕ x1.

In this paper, an MCT gate with (k − 1) controls is denoted
by Toffoli-k. Toffoli-1 and Toffoli-2 are also called NOT and
Controlled-NOT (CNOT), respectively. Toffoli-3 is the orig-
inal Toffoli gate. The schematic of MCT gates are depicted
in Fig. 2. The control lines are denoted by black dots (•),
whereas the target line is denoted by

⊕
.

2.3 Reversible Circuits

A reversible function can be realized by cascading the re-
versible gates where fan-out and feedback are not directly
allowed in the realization of a reversible circuit. In re-
versible circuits, each variable of the function is represented
using a circuit line. A Boolean function that is not re-
versible can be transformed into a reversible function by
adding extra-working lines to ensure reversibility. The extra
inputs in a reversible function can be pre-set to a constant
value, which can be either 0 or 1. The extra outputs are re-
ferred to as garbage outputs. Figure 3 shows a reversible
circuit with three reversible gates, one constant input (0),
two garbage outputs (g1, g2), and two outputs (o1, o2). The
minimum number of reversible gates, constant inputs, and
garbage outputs are the properties of good quality of re-
versible circuits. In this paper, we focus on the minimization
of the MCT gate count in reversible circuits.

2.4 Quantum Logic

The logic representation in quantum computation is quite

ALI et al.: FUNCTION DESIGN FOR REVERSIBLE ADDER/SUBTRACTOR BLOCKS AND ARITHMETIC LOGIC UNITS
2233

different from the logic representation in the classical com-
putation. The basic unit of information in quantum com-
putation is a qubit represented by a state vector. The states

|0〉 =

(
1
0

)
or |1〉 =

(
0
1

)
are known as the computational basis

states. The state of an arbitrary qubit α |0〉+β |1〉 is described

by the vector
(
α
β

)
, where α and β are complex numbers that

satisfy the constraint |α|2 + |β|2 = 1. The measurement of a
qubit results in either 0 with probability |α|2 or 1 with prob-
ability |β|2. Similarly a generalized two qubit state can be
described [39] as

|Ψ〉 = λ1 |00〉 + λ2 |01〉 + λ3 |10〉 + λ4 |11〉 =

λ1
λ2
λ3
λ4

 ,
where λ1λ4 = λ2λ3 for non-entanglement.

On the contrary, a classical bit has a state either 0 or 1,
which is analogous to the measurement of a qubit state either
|0〉 or |1〉 respectively. The main difference between bits and
qubits is that a bit can be in either state 0 or 1 whereas a
qubit can be in a superposition of |0〉 and |1〉.

2.5 Quantum Gates

Quantum gates are the building blocks of quantum circuits,
like classical logic gates such as AND, OR, and NOT are
for conventional digital circuits. Many quantum gates have
been defined and studied, but we concentrate on the el-
ementary quantum gates NOT, CNOT, Controlled-V, and
Controlled-V†, also known as the quantum primitives. This
set of gates is known as the NCV gate library. These gates
have been widely used to synthesize binary reversible func-
tions. The elementary gates are represented by their unitary
matrices. A gate which acts on k qubits is represented by
a 2k × 2k unitary matrix [40], which may include complex
elements, as shown in Table 1.

The 2-line controlled-V gate changes the target line
using the transformation defined by the matrix V =

1+i
2

(
1 −i
−i 1

)
if the single control line has the value 1. The

2-line controlled-V† gate changes the target line using the

transformation defined by the matrix V† = V−1 = 1−i
2

(
1 i
i 1

)
if the single control line has the value 1. Gates V and V† are
referred to as square-root-of-NOT gates since V2 = (V†)2 =(
0 1
1 0

)
.

Controlled-V and Controlled-V† are the inverses of
each other, whereas NOT and CNOT (generally MCT gates)
are the self-inverse gates. Two adjacent Controlled-V (or
Controlled-V†) gates with the same target and control can
be replaced by a CNOT. Any primitive among CNOT,
Controlled-V, and Controlled-V† can be represented by the
pair of other primitives, which is shown in Fig. 4. It is re-
ferred to as the splitting rule. The inverse of the splitting

Table 1 Quantum gate symbols and unitary matrices [39].

Fig. 4 Splitting and merging rules.

Fig. 5 Deletion rule.

rule is referred to as the merging rule.
If two adjacent gates form the identity function, then

they can be deleted, which is known as the deletion rule in
quantum primitives. Therefore, two NOT gates, two CNOT
gates, and an adjacent (Controlled-V, Controlled-V†) pair
(any order) with the same target and control can be elimi-
nated, which is depicted in Fig. 5.

The mobility of gates is determined using the following
property [25], which is called the moving rule.

Property 1 (Moving rule): Two adjacent gates g1 and g2
with controls c1 and c2 and targets t1 and t2 can be inter-
changed if t2 < c1 and t1 < c2.

Example 1: An elementary quantum gate has zero or one
control and one target. Only a NOT gate has no control.
In Fig. 7(a), gates g1 and g2 with controls {a} and {b} and
targets c and c, respectively, can be interchanged because
c < {a} and c < {b}. Subsequently, gates g1 and g3 with
controls {a} and {a} and targets c and b, respectively, can be
interchanged because it satisfies the same condition. Thus,
the gate g1 can be moved to any other location in the circuit.

The deletion and merging rules directly reduce the
quantum gates in a circuit. The moving rule is used to en-
hance the applicability of the deletion and merging rules.

Hung et al. [41] showed that when both CNOT and

2234
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.12 DECEMBER 2018

Fig. 6 Merged 2-qubit gate.

Fig. 7 A quantum circuit.

Controlled-V (or Controlled-V†) are operating on the same
two qubits in a symmetric pattern as shown in Fig. 6, their
total quantum cost is considered as one as well. We call it
the 2-qubit gate rule in the quantum cost metrics.

2.6 Quantum Circuits

A quantum circuit is a model for quantum computation and
can be realized by cascading the quantum gates. Quantum
operations are all reversible, and every classical reversible
circuit may be implemented in quantum technology. The
number of elementary quantum gates required for imple-
menting a reversible circuit is referred to as the QC of a
reversible circuit. The QC is an important parameter to de-
termine the quality of the quantum circuits as well as that of
the reversible circuits. There may be multiple quantum cir-
cuit realizations for a reversible circuit. For example, Fig. 7
shows four realizations of the Toffoli-3 gate. Fig. 7(b) is the
reverse representation of Fig. 7(a). Fig. 7(c) and (d) are ob-
tained by interchanging the Controlled-V and Controlled-V†

in Fig. 7(a) and (b). The QC of every circuit in Fig. 7 is five
as it consists of five quantum gates. However, during the
transformation of MCT circuits to quantum circuits, the QC
of the MCT circuits may differ according to the selection of
the quantum gate realization of Toffoli gates. For example,
consider the MCT circuit shown in Fig. 3. The circuit has
two Toffoli-3 gates. If the two Toffoli gates are replaced by
the realization shown in Fig. 7(a), the QC of the circuit will
be 9. But if the first Toffoli gate is replaced by the realiza-
tion shown in Fig. 7(a), and if the second gate is replaced by
Fig. 7(b), the QC will be 8. The selection of the appropriate
realization of the Toffoli gate will not affect the functionality
of the circuits, however it may provide a better quality of the

circuits in terms of the quantum gate count. This property is
used in the reduction of the QC in Sect. 5.1.

3. Design of Reversible Functions

The unique and interesting point in this paper is our idea of
improvement of reversible circuits. Different from the re-
lated works, we try improvements on the level of the func-
tion design. Our approach of investigating the reversible
functions includes the following:

• Embedding irreversible functions into incompletely-
specified reversible functions,

• Operation assignment,
• Permutation of the function outputs.

Moreover, we provide a few extensions of these techniques
to deal with a set of incompletely-specified reversible func-
tions.

3.1 Embedding Irreversible Functions into Incompletely-
Specified Reversible Functions

The functions of the adder/subtractor and ALU are irre-
versible. To obtain a reversible circuit of an irreversible
function, first, we embed the irreversible function into an
incompletely-specified function to make it reversible. In
this paper, we set a restriction in which only the minimum
necessary ancilla lines are added for embedding. Consider
the functional specification of ALU in Table 2, where ‘-’
denotes the don’t-care value. We added two garbage out-
puts to the irreversible function to embed it into a reversible
function. The garbage outputs are regarded as the columns
of the don’t-care values in the truth table. Therefore, this
function is called an incompletely-specified reversible func-
tion. The required garbage outputs depends on the maxi-
mum number of repetition of an output pattern in the truth
table. If the number of repetition is M, dlog2 Me garbage
outputs are necessary [24]. In Table 2, each of the out-
put pattern (0) and (1) is repeated four times for the in-
put {0100, 1000, 1001, 1010} and {0101, 0110, 0111, 1011},
respectively, which is the maximum number of repetitions.
Using dlog2 4e = 2, two garbage outputs are added. How-
ever, no additional lines are required in this reversible circuit
since the number of outputs is equal to that of inputs.

Generally, an irreversible function can be embedded in
a reversible function by adding the necessary garbage out-
puts, and the resulting reversible function is incompletely
specified. To discuss about the incompletely-specified
functions, some definitions are given. Note that ‘a re-
versible function’ indicates a fully-specified reversible func-
tion hereafter, unless otherwise noted.

Definition 2: An incompletely-specified reversible func-
tion is abbreviated to an ISRF. Let F be a (fully-specified)
reversible function. We say that F matches an ISRF F′ if
F(X) = F′(X) for all inputs X ∈ {0, 1}n except the case
F′(X) = ‘-’, where ‘-’ is the don’t-care value. F ∈: F′ de-
notes that F matches F′. As an extension, for a set of ISRFs

ALI et al.: FUNCTION DESIGN FOR REVERSIBLE ADDER/SUBTRACTOR BLOCKS AND ARITHMETIC LOGIC UNITS
2235

Table 2 An incompletely-specified function ALU.

S 1 S 2 A B g1 g2 O1 O2
0 0 0 0 - - 0 0
0 0 0 1 - - 0 1
0 0 1 0 - - 0 1
0 0 1 1 - - 1 0
0 1 0 0 - - - 0
0 1 0 1 - - - 1
0 1 1 0 - - - 1
0 1 1 1 - - - 1
1 0 0 0 - - - 0
1 0 0 1 - - - 0
1 0 1 0 - - - 0
1 0 1 1 - - - 1
1 1 0 0 - - 0 0
1 1 0 1 - - 1 1
1 1 1 0 - - 0 1
1 1 1 1 - - 0 0

F , F ∈: F denotes that F ∈: F′ holds for some ISRF F′ in
F . We also say that F matches F if F ∈: F .

The minimality, in this paper, is defined by the gate
count of MCT circuits. Below, an extension of the minimal-
ity to a set of ISRFs is given.

Definition 3: Let F be a reversible function of n variables.
Among all n-bit MCT circuits that realize F, those with the
exact minimum number of MCT gates are called the mini-
mum MCT circuits of F. The size of F is defined by the gate
count of the minimum MCT circuit of F, which is denoted
by γ(F). We extend γ to that for a set of ISRFs F ; γ(F)
is defined by the minimum γ(F) for all F ∈: F , namely,
γ(F) = min{γ(F) | F ∈: F }. OPT (F) is the set of re-
versible functions F ∈: F with the minimum size γ(F);
OPT (F) = {F | F ∈: F , γ(F) = γ(F)}.

3.2 Operation Assignment

In this work, we introduce a new approach called synthe-
sis with operation assignment. It is a permutation of groups
of rows in the truth table. This approach is applicable to
those circuits which have more than one operations such as
adder/subtractor and arithmetic logic unit. This type of the
circuits has the selector bits to choose the desired operation.
Even if the set of operations is the same, the functions con-
sisting of those operations vary according to the assignment
of the selector bits to the operations. Our approach is to try
all permutations of operations and find the minimum circuit
realization. If a function has m selector bits, 2m! variants
are considered. To utilize the concept of the permutation
of operations, we give a formal definition of an equivalence
relation on the operation assignment.

Definition 4: Suppose that a multiple-output function F
has m selector bits {S 1, S 2, . . . , S m} and is represented by
F(S 1, S 2, . . . , S m, X). F may be an ISRF. For a non-negative
integer i (0 ≤ i ≤ 2m − 1), Fi(X) denotes the cofactor
F(i1, i2, . . . , im, X), where (i1, i2, . . . , im) is an m-bit binary

Table 3 Four operations of ALU.

ADD:
F0(A, B) =

A B g1 g2 O1 O2
0 0 - - 0 0
0 1 - - 0 1
1 0 - - 0 1
1 1 - - 1 0

OR:
F1(A, B) =

A B g1 g2 O1 O2
0 0 - - - 0
0 1 - - - 1
1 0 - - - 1
1 1 - - - 1

AND:
F2(A, B) =

A B g1 g2 O1 O2
0 0 - - - 0
0 1 - - - 0
1 0 - - - 0
1 1 - - - 1

SUB:
F3(A, B) =

A B g1 g2 O1 O2
0 0 - - 0 0
0 1 - - 1 1
1 0 - - 0 1
1 1 - - 0 0

representation of i. The cofactors Fi(X) are called oper-
ations of F(S 1, S 2, . . . , S m, X). Literals S̄ and S are de-
noted by S 0 and S 1, respectively. By using these nota-
tions, the Shannon expansion of F with respect to variables
S 1, S 2, . . . , S m is represented by F(S 1, S 2, . . . , S m, X) =∨

0≤i≤2m−1 S i1
1 S i2

2 · · · S
im
m · Fi(X). We say that a function de-

fined by
∨

0≤i≤2m−1 S i1
1 S i2

2 · · · S
im
m ·Fπ(i)(X) is OA-equivalent to

F(S 1, S 2, . . . , S m, X) if π is a permutation of {0, 1, . . . , 2m −

1}. The set of all functions OA-equivalent to F is called
the OA-equivalence class of F and denoted by OAEC(F), in
which the selector bits {S 1, S 2, . . . , S m} of F is assumed to
be specified in the definition of F.

m selector bits can identify up to 2m operations. There-
fore, for a function with m selector bits, there exist 2m! OA-
equivalent functions at most by the permutation of 2m oper-
ations.

Property 2: For a function F with m selector bits,
|OAEC(F)| ≤ 2m!.

For a function F and a circuit C, it is commonly said that C
realizes F if the function of C is equal to F. We also extend
the concept of circuit realization from a reversible function
to a set of ISRFs.

Definition 5: Let C be a reversible circuit and F a set of
ISRFs. We say that C realizesF if the function of C matches
F .

Example 2: Consider the function of ALU shown in Ta-
ble 2, in which S 1 and S 2 are the selector bits. Table 3
shows the four operations F0, . . . , F3 of ALU. With these op-
erations, ALU is represented by S̄ 1S̄ 2F0(X) ∨ S̄ 1S 2F1(X) ∨
S 1S̄ 2F2(X)∨S 1S 2F3(X). For example, the function ALU’ =

S̄ 1S̄ 2F1(X) ∨ S̄ 1S 2F0(X) ∨ S 1S̄ 2F3(X) ∨ S 1S 2F2(X) made
by a permutation of operations is OA-equivalent to ALU.
The difference between ALU and ALU’ is the assignment of

2236
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.12 DECEMBER 2018

Table 4 Operation assignment for ALU.

S 1 S 2 ALU ALU’
0 0 ADD OR
0 1 OR ADD
1 0 AND SUB
1 1 SUB AND

Fig. 8 (a) Circuit realizing ALU, (b) Circuit realizing OAEC(ALU).

operations, which is summarized in Table 4. A function OA-
equivalent to ALU provides the same set of operations as
ALU. However, the cost of their circuit realizations are dif-
ferent in general. A minimum MCT circuit of ALU with the
original assignment in Table 4 is shown in Fig. 8(a) using
seven reversible gates (one NOT gate, two CNOT, and four
Toffoli-3 gates) with a quantum cost of 23. If we use a dif-
ferent assignment of operations as ALU’, a different circuit
realization using six gates (two CNOT and four Toffoli-3
gates) with a quantum cost of 22 is obtained as shown in
Fig. 8(b). This example shows that permutation of opera-
tions has direct effect on the cost of the reversible circuit
realization.

3.3 Permutation of Function Outputs

The idea of permutation of outputs of a reversible function
has been introduced in the book by Wille et al. [42], which
is called Synthesis with Output Permutation (SWOP). The
following definition is the ISRF version of SWOP and its
extension to a set of ISRFs.

Definition 6: For a given ISRF F, the set of variants
made by the permutation of outputs in F is called the P-
equivalence class of F, which is denoted by PEC(F). We
extend PEC so that it accepts a set of ISRFs F : PEC(F) =⋃

F∈F PEC(F).

The P-equivalence is a permutation of columns in the table
whereas the OA-equivalence in the previous section is a per-
mutation of groups of rows in the truth table.

|PEC(F)| for an n-output ISRF F is n! in maximum
since PEC(F) is a permutation of the outputs of F.

Property 3: For an n-output ISRF F, |PEC(F)| ≤ n!.

Note that the P-equivalence class of a reversible function
F is different from the conjugacy class [43] of F (also
called the line reordering). In the conjugacy class, the in-
puts and outputs in F are relabeled simultaneously. In the
P-equivalence class, the outputs in F are relabeled, but the
inputs are not altered. It is known that every function in the
conjugacy class of F can be realized in a circuit with the
same gate count. However, the gate count of the circuit of a
function in the P-equivalence class of F is not the same as

Fig. 9 Circuit realizing PEC(ALU).

that of F in general like Example 3. This means that there
may be a smaller function in the gate count than F among
functions matching PEC(F).

Example 3: Consider that ALU shown in Table 2 maps
the input (S 1, S 2, A, B) to the output (g1, g2,O1,O2). The
minimum MCT circuit shown in Fig. 8(a) consists of seven
gates. Figure 9 shows an MCT circuit realizing PEC(ALU),
in which the four outputs of the function have been re-
ordered to another position. More precisely, the MCT circuit
shown in Fig. 9 maps the input (S 1, S 2, A, B) to the output
(g1,O1, g2,O2). This reduces the overall number of gates
from seven to six.

4. Minimum MCT Circuits

The two techniques OAEC and PEC given in the previous
section can be combined for a further reduction of gates in
a circuit. In this section, we discuss the minimization of
MCT circuits realizing PEC(OAEC(F)) for a given F. By
Definition 6, PEC has been extended to accepting a set of
ISRFs like OAEC(F).

4.1 Minimization Algorithm

The adder/subtractor and ALUs that will be proposed in the
later sections are 4-bit or 5-bit functions. The minimum
MCT circuits for all the 4-bit reversible functions have been
obtained by Golubitsky et al. [43]. Their algorithm, how-
ever, does not support ISRFs. A SAT-based algorithm [30]
can be applied to ISRFs. The algorithm basically produces
one minimum circuit for a given ISRF; however, it does not
provide a list of minimum circuits for other reversible func-
tions that match the ISRF. Instead of these sophisticated al-
gorithms, we use the hash tables of minimum MCT circuits
with up to seven gates for 4-bit functions and five gates for
5-bit functions. The tables are simply constructed using an
exhaustive enumeration of gate combinations. The proce-
dure MakeTable in Fig. 10 is used to construct such tables.
Although the applicability of this simple strategy is limited
to small circuits due to the massive consumption of mem-
ory, it is sufficient to achieve our purpose. In the algorithm,
the number of input/output lines, or bits, are denoted as n,
and minimum MCT circuits with i gates are stored in hti.
The function FindOPT obtains OPT (F) and its minimum
MCT circuits in pairs by searching for ht1, ht2, . . . succes-
sively. A memory saving technique with symmetry [43] is
used, however, the description of this technique is omitted
from Fig. 10. We combine the hash tables of these minimum
circuits and the techniques proposed in Sect. 3, to obtain the

ALI et al.: FUNCTION DESIGN FOR REVERSIBLE ADDER/SUBTRACTOR BLOCKS AND ARITHMETIC LOGIC UNITS
2237

1: var ht0, ht1, ht2, . . . : Hash Table;
2: procedure MakeTable(m)
3: . Input: m is an integer.
4: . Side Effect: minimum MCT circuits with up to m gates are

stored in the hash tables ht0, ht1, ht2,
5: if m = 0 then ht0[identity]← the empty circuit;
6: else
7: MakeTable(m − 1);
8: for all entry C ∈ htm−1 do
9: for all G ∈ Gn do

10: if htm[f unc(C | G)] = ∅ then
11: htm[f unc(C | G)]← C | G;
12: end if
13: end for
14: end for
15: end if
16: end procedure

17: function FindOPT(F)
18: . Input: F is a set of ISRFs.
19: . Output: OPT (F) and its minimum MCT circuits in pairs.
20: var i← 1 : Integer;
21: var S ← ∅ : Set;
22: while (S = ∅) or (hti is not empty) do
23: for all key F ∈ hti do
24: if F ∈: F then S ← {(F, hti[F])} ∪ S ;
25: end if
26: end for
27: i← i + 1;
28: end while
29: return S ;
30: end function
Gn: the set of all MCT gates with up to n bits.
C | G: the concatenation of circuit C and gate G.
f unc(C | G): the reversible function of the circuit C | G.

Fig. 10 Simple minimization algorithm with up to m gates.

minimum MCT realization of the adder/subtractor and ALU
circuits.

Both the SAT-based algorithm and FindOPT can obtain
minimum MCT circuits, however, we have used FindOPT in
this paper. We actually tried the SAT-based algorithm and
compared the results with ours. Thus, we have confirmed
that the list of minimum MCT circuits that were obtained by
FindOPT includes a better circuit in terms of QC rather than
the one that was obtained using the SAT-based algorithm.

4.2 Reversible Adder/Subtractor

In this section, we obtain the minimum MCT circuits of half
and full adder/subtractors by using our proposed techniques.
An adder/subtractor has the two operations of ‘adder’ and
‘subtractor’, and the 1-bit selector S decides whether either
of these operations should be performed. The possible as-
signment of operations is shown in Table 5. Along with half
and full adders, there are half and full adder/subtractors.

4.2.1 Half Adder/Subtractor

According to the operation assignment that is presented
in Table 5, two OA-equivalent functions of the half
adder/subtractor are observed to exist for Assignments 1 and
2. Equations (1) and (2) provide the logical expressions for

Table 5 Operation assignment for adder/subtractor.

S Assignment 1 Assignment 2
0 Adder Subtractor
1 Subtractor Adder

Table 6 An incompletely specified half adder/subtractor function hAS1.

c S A B g1 g2 C/B S/D
0 0 0 0 - - 0 0
0 0 0 1 - - 0 1
0 0 1 0 - - 0 1
0 0 1 1 - - 1 0
0 1 0 0 - - 0 0
0 1 0 1 - - 1 1
0 1 1 0 - - 0 1
0 1 1 1 - - 0 0
1 0 0 0 - - - -
1 0 0 1 - - - -
1 0 1 0 - - - -
1 0 1 1 - - - -
1 1 0 0 - - - -
1 1 0 1 - - - -
1 1 1 0 - - - -
1 1 1 1 - - - -

Table 7 OPT (PEC(hAS1)), and its minimum MCT circuits.

Reversible Function Minimum MCT Circuit
(0 3 6 13 4 15 2 1 8 11 14 5 12 7 10 9) (2 1) (3 2) (1 3 0)
(0 3 2 13 4 15 6 1 8 11 10 5 12 7 14 9) (2 3 1) (3 2) (1 3 0)
(0 3 2 9 4 15 6 5 8 11 10 1 12 7 14 13) (2 3 0) (3 2) (1 3 0)
(0 1 7 14 4 13 3 2 8 9 15 6 12 5 11 10) (2 1) (1 3 0) (2 3)
(0 1 3 14 4 13 7 2 8 9 11 6 12 5 15 10) (2 3 1) (1 3 0) (2 3)
(0 1 3 10 4 13 7 6 8 9 11 2 12 5 15 14) (2 3 0) (1 3 0) (2 3)

these functions. ‘C/B’ and ‘S/D’ stand for Carry/Borrow
and Sum/Difference, respectively.{

C/B = S̄ AB ∨ S (AB ⊕ B)
S/D = A ⊕ B

(1){
C/B = S̄ (AB ⊕ B) ∨ S AB
S/D = A ⊕ B

(2)

Equation (1) is embedded in the truth table as in Ta-
ble 6, which is denoted by hAS1. While embedding, two
garbage outputs, g1 and g2, are added because they are re-
quired by the maximum number of repetitions of an output
pattern in the truth table. To balance the numbers of inputs
and outputs, a constant input c = 0 is added. Similarly, the
embedded Eq. (2) is denoted by hAS2.

Table 7 shows the minimum MCT realization of the
P-equivalence class of hAS1, or OPT (PEC(hAS1)), which
was obtained by our FindOPT program. The six reversible
functions have minimum MCT circuits with three gates. On
the right side of Table 7, a circuit is represented by a se-
quence of reversible gates, in which (x y) represents a CNOT
gate and (x y z) represents a Toffoli gate. The last parameter
is the target line, and the remaining parameters are the con-
trol lines. For example, “(2 1) (3 2) (1 3 0)” in the first row
represents the MCT circuit of Fig. 11(a), where the number-
ing of the lines is (c, S , A, B) = (0, 1, 2, 3). The QC of the
MCT circuit is seven (Fig. 11(b)).

2238
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.12 DECEMBER 2018

Fig. 11 The proposed half adder/subtractor: (a) the minimum MCT cir-
cuit, and (b) the reduced quantum circuit.

Table 8 OPT (PEC(hAS2)), and its minimum MCT circuits.

Reversible Function Minimum MCT Circuit
(0 15 6 1 4 3 2 13 8 7 14 9 12 11 10 5) (3 2) (2 1) (1 3 0)
(0 11 2 1 4 7 6 13 8 3 10 9 12 15 14 5) (1 3 0) (3 2) (2 3 0)
(0 15 2 1 4 3 6 13 8 7 10 9 12 11 14 5) (3 2) (2 3 1) (1 3 0)

Similar experiments were conducted on hAS2. The re-
sults, however, were not better than those of hAS1. The
OPT (PEC(hAS2)) are shown in Table 8. Three functions
have minimum MCT circuits with three gates.

Since the possible operation assignments for the
half adder/subtractor are hAS1 and hAS2, we have
OAEC(hAS1) = {hAS1, hAS2}. Based on the experiments
that were performed using hAS1 and hAS2, we have con-
firmed that their minimum size is γ(PEC(OAEC(hAS1))) =

γ(PEC(hAS1)) = γ(PEC(hAS2)) = 3; additionally, hAS1
and hAS2 can be realized by MCT circuits using two CNOT
gates and one Toffoli gate.

4.2.2 Full Adder/Subtractor

A full adder/subtractor acts as a full adder or a full subtractor
depending on the value of the selector bit s. As we have seen
in Table 5, two full adder/subtractor functions are possible,
whose logic expressions can be represented using Eqs. (3)
and (4), respectively.{

C/B = S̄ (AB ∨ AC ∨ BC) ∨ S (ĀB ∨ BC ∨ ĀC)
S/D = A ⊕ B ⊕C

(3){
C/B = S̄ (ĀB ∨ BC ∨ ĀC) ∨ S (AB ∨ AC ∨ BC)
S/D = A ⊕ B ⊕C

(4)

In a similar mannar to that of the half adder/subtractor,
Eqs. (3) and (4) are embedded to ISRFs, and are denoted
by fAS1 and fAS2, respectively. To balance the number of
inputs and outputs, two garbage outputs g1 and g2 are added,
however, no lines are added. fAS1 and fAS2 can be realized
in 4-line MCT circuits.

In Table 9, the list of OPT (PEC(fAS1)) is presented;
this list is obtained using our FindOPT program. It can
be observed that 30 functions have minimum MCT circuits
with five gates, i.e., γ(PEC(fAS1)) = 5. As an example
of the minimum MCT circuit of the full adder/subtractor,
“(1 0) (3 2) (2 1) (3 0) (0 2 3)” is shown in Fig. 12, where
the numbering of the lines is (S , A, B,C) = (0, 1, 2, 3). The

circuit consists of four CNOT gates and one Toffoli gate.
The reduced quantum circuit realization of the minimum
MCT circuit of the proposed full adder/subtractor is shown
in Fig. 12(b)

Although we have obtained OPT (PEC(fAS2)), the
list has been omitted in this paper. This is because
no results were observed to be better than that of
OPT (PEC(fAS1)). In summary, OPT (PEC(fAS2)) con-
sists of 26 functions, and γ(PEC(fAS2)) = 5. Thus,
we have γ(PEC(OAEC(fAS1))) = γ(PEC(fAS1)) =

γ(PEC(fAS2)) = 5.

4.3 Simple Reversible Arithmetic Logic Units

The operation assignment works more efficiently for the de-
sign of ALUs than adder/subtractors since an ALU has more
operations assigned by the selector bits. This section reports
the minimum MCT circuits of some benchmarks of simple
reversible ALUs consisting of only four or eight 1-bit op-
erations. It should be noted that, this is not the limitation
of the operation assignment technique but the limitation of
the minimizer. Instead of the exact minimizer, it is possible
to use a fast heuristic synthesizer supporting ISRFs to ob-
tain MCT circuits of larger ALUs without guaranteeing the
minimality. In this paper, however, we focus on obtaining
minimum MCT circuits. The minimum results are valuable
as scientific and theoretical data in the related fields. To ap-
ply a heuristic method to the equivalence classes for larger
ALUs [2] is our next task.

4.3.1 1-bit ALU Benchmarks

We applied our function design technique to 1-bit ALU
benchmarks: Mini-ALU [38] and Gupta’s-LU [37]. The em-
bedding in the truth table of the reversible ALU is similar to
that of the reversible adder/subtractor. In this paper, we skip
the truth table representation of those reversible ALUs.

FindOPT program confirmed that γ(PEC(OAEC(
Mini-ALU)) = 5. The list of OPT (PEC(OAEC(Mini-ALU)))
is omitted, but the number of it is |OPT (PEC(OAEC(
Mini-ALU)))| = 266. One of the minimum MCT circuits
among them is shown in Fig. 13. The MCT circuit reported
in Revlib [38] consists of six gates. We reduced the re-
versible gates from six to five.

For Gupta’s-LU, γ(PEC(OAEC(Gupta’s-LU))) = 3
and |OPT (PEC(OAEC(Gupta’s-LU)))| = 48. One of the
minimum MCT circuits is shown in Fig. 14. Originally
Gupta’s-LU [37] was constructed by 18 reversible gates
whereas our technique obtained circuits with only three re-
versible gates.

4.3.2 Revised ALUs

As seen in Sect. 4.2, addition and subtraction are essential
operations in computation. It is preferable that an ALU
has those two operations. Since Mini-ALU does not have
subtraction, we propose a revised ALU, denoted by ALU,

ALI et al.: FUNCTION DESIGN FOR REVERSIBLE ADDER/SUBTRACTOR BLOCKS AND ARITHMETIC LOGIC UNITS
2239

Table 9 OPT (PEC(fAS1)) and its minimum MCT circuits.

Reversible Function Minimum MCT circuit
(0 14 6 9 12 3 11 5 8 7 15 1 4 10 2 13) (1 0) (3 2) (2 1) (3 0) (0 2 3)
(0 5 13 10 12 11 3 6 8 15 7 2 4 1 9 14) (1 0) (2 3) (3 1) (2 0) (0 3 2)
(0 14 6 1 12 3 11 13 8 7 15 9 4 10 2 5) (3 2) (1 0) (2 1) (2 3 0) (0 2 3)
(0 5 13 2 12 11 3 14 8 15 7 10 4 1 9 6) (2 3) (1 0) (3 1) (2 3 0) (0 3 2)
(0 10 2 9 14 5 13 7 8 3 11 1 6 12 4 15) (3 0) (1 0) (3 2) (0 2 3) (1 2)
(0 1 9 10 13 14 6 7 8 11 3 2 5 4 12 15) (2 0) (1 0) (2 3) (0 3 2) (1 3)
(0 14 6 9 4 3 11 13 8 7 15 1 12 10 2 5) (3 2) (1 2 0) (2 1) (3 0) (0 2 3)
(0 5 13 10 4 11 3 14 8 15 7 2 12 1 9 6) (2 3) (1 3 0) (3 1) (2 0) (0 3 2)
(0 10 2 1 14 5 13 15 8 3 11 9 6 12 4 7) (3 2) (1 0) (2 3 0) (0 2 3) (1 2)
(0 1 9 2 13 14 6 15 8 11 3 10 5 4 12 7) (2 3) (1 0) (2 3 0) (0 3 2) (1 3)
(0 14 6 9 4 11 3 13 8 7 15 1 12 2 10 5) (3 0) (3 2) (1 2 3) (2 1) (0 2 3)
(0 5 13 10 4 3 11 14 8 15 7 2 12 9 1 6) (2 0) (2 3) (1 3 2) (3 1) (0 3 2)
(0 1 9 10 5 6 14 15 8 11 3 2 13 12 4 7) (2 0) (2 3) (1 3 2) (0 3 2) (1 3)
(0 10 2 9 6 13 5 15 8 3 11 1 14 4 12 7) (3 0) (3 2) (1 2 3) (0 2 3) (1 2)
(0 10 2 9 6 5 13 15 8 3 11 1 14 12 4 7) (3 2) (3 0) (1 2 0) (0 2 3) (1 2)
(0 1 9 10 5 14 6 15 8 11 3 2 13 4 12 7) (2 3) (2 0) (1 3 0) (0 3 2) (1 3)
(0 6 14 9 4 3 11 13 8 15 7 1 12 10 2 5) (2 0) (3 2) (2 1) (1 2 3) (0 2 3)
(0 13 5 10 4 11 3 14 8 7 15 2 12 1 9 6) (3 0) (2 3) (3 1) (1 3 2) (0 3 2)
(0 5 13 10 12 11 2 7 8 15 6 3 4 1 9 14) (2 1) (1 0) (3 1) (0 2 3) (0 3 2)
(0 14 6 9 12 1 11 7 8 5 15 3 4 10 2 13) (3 1) (1 0) (2 1) (0 3 2) (0 2 3)
(0 5 13 2 4 11 3 6 8 15 7 10 12 1 9 14) (1 3 0) (2 3) (3 1) (1 2 0) (0 3 2)
(0 14 6 1 4 3 11 5 8 7 15 9 12 10 2 13) (1 2 0) (3 2) (2 1) (1 3 0) (0 2 3)
(0 14 6 1 4 3 11 13 8 7 15 9 12 10 2 5) (1 2 0) (3 2) (2 1) (1 2 3 0) (0 2 3)
(0 5 13 2 4 11 3 14 8 15 7 10 12 1 9 6) (1 3 0) (2 3) (3 1) (1 2 3 0) (0 3 2)
(0 5 13 2 4 3 11 6 8 15 7 10 12 9 1 14) (2 3) (2 3 0) (1 3 2) (3 1) (0 3 2)
(0 14 6 1 4 11 3 5 8 7 15 9 12 2 10 13) (3 2) (2 3 0) (1 2 3) (2 1) (0 2 3)
(0 10 2 1 6 5 13 7 8 3 11 9 14 12 4 15) (3 2) (2 3 0) (1 2 0) (0 2 3) (1 2)
(0 1 9 2 5 14 6 7 8 11 3 10 13 4 12 15) (2 3) (2 3 0) (1 3 0) (0 3 2) (1 3)
(0 1 9 2 5 6 14 7 8 11 3 10 13 12 4 15) (2 3) (2 3 0) (1 3 2) (0 3 2) (1 3)
(0 10 2 1 6 13 5 7 8 3 11 9 14 4 12 15) (3 2) (2 3 0) (1 2 3) (0 2 3) (1 2)

Fig. 12 Proposed full adder/subtractor (a) minimum MCT circuit, and
(b) reduced quantum circuit.

Fig. 13 Mini-ALU: Minimum MCT circuit and its operation assignment.

in which subtraction is adopted instead of ID in Mini-ALU.
The truth table has been given in Tables 2 and 3 as the ex-
amples of the operation assignment and the output permuta-
tion. We confirmed that γ(ALU) = 7, γ(OAEC(ALU)) = 6,
and γ(PEC(ALU)) = 6 as in Examples 2 and 3. By com-
bining OAEC and PEC, a further reduction has been made:
γ(PEC(OAEC((ALU))) = 5. The list of OPT (PEC(OAEC(
ALU))) is omitted, but the number of it is |OPT (PEC(
OAEC(ALU)))| = 19. One of the minimum MCT circuits
among them is shown in Fig. 15.

Fig. 14 Gupta’s-LU: Minimum MCT circuit and its operation assign-
ment.

Fig. 15 ALU: Minimum MCT circuit and its operation assignment.

In contrast, we consider a simpler version of Gupta’s-
LU. Gupta’s-LU implements eight operations with five in-
puts. By reducing the operations into AND, OR, and XOR,
a compact version with four inputs can be defined, which
is denoted by LU. We select AND, OR, and XOR because
they are the most fundamental and common logic opera-
tions. The NOT operation is included in XOR. NOT can
be executed by assigning the value 1 to one of the XOR
operands: x̄ = x⊕1. The compact LU is useful when this set
of operations are sufficient for the use of logic units. Find-
OPT confirmed that γ(PEC(OAEC(LU))) = 3 and |OPT (
PEC(OAEC(LU)))| = 28. One of the minimum MCT cir-

2240
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.12 DECEMBER 2018

Fig. 16 LU: Minimum MCT circuit and its operation assignment.

cuits is shown in Fig. 16.

5. Reduced Quantum Circuits

A number of reversible circuits of adder/subtractor
blocks [5], [12], [16] have been proposed with using vari-
ous reversible gate libraries under the different constraints
of constant and garbage lines. The common way to com-
pare the total quality of them is to evaluate the quantum cost
(QC) of the circuits. In this section, we obtain quantum cir-
cuits of our reversible adder/subtractors and ALUs to make
a comparison of the QC with the existing counterparts.

5.1 Reduction of the QCs

This section describes the transformation of MCT circuits
into quantum circuits with the NCV gate library and the re-
duction of the quantum circuits with a simple greedy algo-
rithm. The algorithm is given in Fig. 17. In this algorithm,
the function ObtainQuantumCircuit takes an MCT circuit
as the argument and produces the reduced quantum circuit
as the return value. Unlike the MCT circuits in Sect. 4, the
resulting quantum circuits are sub-optimal. Although the
optimality is not guaranteed, the QC of our quantum cir-
cuits of the reversible adder/subtractors and ALUs are lower
than that of the existing counterparts.

The function QuantumCircuits transforms an MCT
circuit mctC into a set of initial quantum circuits. For Toffoli
gates in mctC, QuantumCircuits generates all possible com-
binations of Toffoli decomposition described in Sect. 2.6
during the transformation.

The function ReduceQuantum reduces the QC of a
quantum circuit qC by a greedy approach. In ReduceQuan-
tum, the function MoveGateAndReduce searches a pair of
adjacent gates in C by moving the gate g according to
the moving rule of Property 1. If the pair of gates forms
the identity function (according to deletion rules shown in
Fig. 5), then the pair is deleted. If a pair of gates can be
merged into a single gate (according to the merging rules
shown in Fig. 4), then the pair is replaced by the single gate.
The execution of MoveGateAndReduce is repeated if the
quantum gates in the circuit C are reduced successively.

5.2 Comparison of Quantum Costs

We have implemented the algorithm in Fig. 17 in MAT-
LAB. Tables 10 and 11 show the QC of half and full
adder/subtractors for all minimum MCT circuits shown in
Tables 7 and 9, respectively, in which the ‘After Reduc-
tion’ columns indicate the QC after executing our program.

1: function ObtainQuantumCircuit(mctC)
2: . Input: mctC is an MCT circuit.
3: . Output: a reduced quantum circuit.
4: return a circuit with the smallest QC in {ReduceQuantum(qC) |

qC ∈ QuantumCircuits(mctC)};
5: end function

6: function ReduceQuantum(qC)
7: . Input: qC is a quantum circuit.
8: . Output: a reduced quantum circuit.
9: var C : Circuit;

10: var C∗ ← qC : Circuit;
11: repeat
12: C ← C∗;
13: for all gate g in C do
14: C∗ ← MoveGateAndReduce(C, g);
15: if |C∗ | < |C| then
16: break; . Exiting the for loop.
17: end if
18: end for
19: until |C∗ | = |C|
20: return C∗;
21: end function
|C|: the number of gates in the quantum circuit C.

Fig. 17 Simple algorithm for obtaining reduced quantum circuits.

Table 10 Half adder/subtractor.

Circuit
No

Quantum Cost
Before Reduction After Reduction

1 7 7
2 11 8
3 11 8
4 7 7
5 11 10
6 11 10

The smallest quantum circuits in Tables 10 and 11 are
shown in Fig. 11(b) and Fig. 12(b), respectively. Although,
in Fig. 12(b), the number of elementary quantum gates is
nine, we count the QC as eight according to the 2-qubit gate
rule in Fig. 6 in Sect. 2.5. Table 12 shows the comparison
with existing full adder/subtractor designs with different re-
versible gate libraries. According to our knowledge, the pro-
posed design of adder/subtractor is better than the existing
counterparts in terms of the QC, the number of constant in-
put, and the garbage outputs.

Table 13 shows the comparison of 1-bit ALUs, in
which ‘Gates’ and ‘QC’ denote the number of MCT gates
and the QC, respectively. ‘QC*’ is the QC of the 2-qubit
gate rule. The QC of Gupta’s-LU and Mini-ALU has been
reduced drastically in our design compared with the origi-
nal.

6. Conclusion

For most of the computing devices, adder/subtractor blocks
and ALUs are crucial, and the development of cost-efficient
arithmetic blocks will improve the efficiency of the whole
system. In this paper, we gave the minimum MCT circuits
that realize half and full adder/subtractors and some bench-
mark ALUs. To improve the function design of this type of

ALI et al.: FUNCTION DESIGN FOR REVERSIBLE ADDER/SUBTRACTOR BLOCKS AND ARITHMETIC LOGIC UNITS
2241

Table 11 Full adder/subtractor.

Circuit
No

Quantum Cost
Before Reduction After Reduction

1 9 8
2 9 8
3 13 11
4 13 11
5 9 8
6 9 8
7 13 10
8 13 10
9 13 9

10 13 11
11 13 9
12 13 9
13 13 11
14 13 11
15 13 11
16 13 11
17 13 12
18 13 12
19 13 12
20 13 12
21 17 16
22 17 16
23 26 23
24 26 23
25 17 13
26 17 11
27 17 12
28 17 14
29 17 15
30 17 13

Table 12 Comparison between proposed reversible full adder/subtractor
and the existing counterparts.

Design
Cost Metrics

Input Reversible Constant Garbage QC
Lines Gates Inputs Outputs

1 [12] 7 8 3 5 21
2 [12] 5 4 1 3 14
3 [12] 5 4 1 3 10

[16] 4 4 0 2 11
[5] 5 3 1 2 9

Proposed 4 5 0 2 8

Table 13 Comparison of 1-bit ALUs.

Original Our Gates
Design Operations Lines Gates/QC /QC(QC*)

Gupta’s- AND, NAND, 5 18/114 3/15(14)
LU [37] OR, NOR,

XOR, XNOR,
Constant 1, 0

Mini-ALU AND, OR, 4 6/62 5/15(14)
[38] ADD, ID

Proposed ADD, OR, 4 5/17(15)
ALU AND, SUB

Proposed XOR, OR, 4 3/11(10)
LU AND, N/A

QC*: QC under the merged 2-qubit gate rule.

arithmetic blocks, we proposed a combination of the equiva-
lence classes PEC(OAEC(F)) of ISRFs F and extended the
minimization problem of F into γ(F) and OPT (F) for the
set of ISRFs F . The quantum circuits of those MCT circuits
were also given as the goal of the reversible synthesis. By
the experimental results, we have shown that our proposed
quantum circuits are better than the existing design in terms
of the number of input lines, constant inputs, garbage out-
puts, and the quantum cost.

Recently, linear nearest neighbor (LNN) architecture
have gotten intensive attention to a practical point of view
and with respect to various nanotechnologies, such as quan-
tum optics, linear ion Trap, nuclear magnetic resonance
(NMR), where every qubit can interact with at most one
neighbor above and one neighbor below. It is, therefore,
important to develop a design methodology for the new ar-
chitecture. According to the different technological con-
straints, we are considering to revise our synthesis ap-
proach and design more practical reversible and quantum
adder/subtractors and ALUs.

References

[1] M.K. Thomsen, R. Gluck, and H.B. Axelsen, “Reversible arithmetic
logic unit for quantum arithmetic,” J. Phys. A: Math. Theor., vol.43,
no.38, 2010.

[2] M. Morrison and N. Ranganathan, “Design of reversible ALU based
on novel programmable reversible logic gate structures,” IEEE Com-
puter Society Annual Symposium on VLSI, pp.126–131, 2011.

[3] R. Aradhaya, K.N. Muralidhara, and B. Kumar, “Design of low
power arithmetic unit based on reversible logic,” International Jour-
nal of VLSI and Signal Processing Applications, vol.1, no.1, pp.30–
38, 2011.

[4] B.K. Sikdar, “Design of fault tolerant reversible arithmetic logic unit
in QCA,” International Symposium on Electronic System Design,
2012.

[5] S. Sultan and K. Radecka, “Reversible architecture of computer
arithmetic,” Int. J. Comput. Appl., vol.93, no.14, pp.6–14, May
2014.

[6] M.H.A. Khan, “Quantum realization of ternary adder circuits,” Proc.
Third International Conference on Electrical and Computer Engi-
neering, pp.249–252, 2004.

[7] Y.V. Rentergem and A.D. Vos, “Optimal design of a reversible full
adder,” International Journal of Unconventional Computing, vol.1,
pp.339–355, 2005.

[8] H. Thapliyal and A.P. Vinod, “Transistor realization of reversible
TSG gate and reversible adder architectures,” Proc. IEEE Asia Pa-
cific Conference on Circuits and Systems, pp.418–421, 2006.

[9] H. Thapliyal and M.B. Srinivas, “Novel design and reversible logic
synthesis of multiplexer based full adder and multipliers, Forty Eight
Midwest Symposium on Circuits and Systems, vol.2, pp.1593–1596,
2006.

[10] R.K. James, T.K. Shahana, K.P. Jacob, and S. Sasi, “A new look
at reversible logic implementation of decimal adder,” International
Symposium on System-On-Chip, pp.1–4, 2007.

[11] M. Majid, M. Eshghi, M. Haghparast, and A. Bahrololoom, “De-
sign and optimization of reversible BCD adder/subtractor circuit for
quantum and nanotechnology based systems,” World Applied Sci-
ences Journal, vol.4, no.6, pp.787–792, 2008.

[12] H.G. Rangaraju, U. Venugopal, K.N. Muralidhara, and K.B. Raja,
“Low power reversible parallel binary adder/subtractor,” Interna-
tional Journal of VLSI Design and Communication System (VL-
SICS), vol.1, no.3, pp.23–34, 2010.

http://dx.doi.org/10.1088/1751-8113/43/38/382002
http://dx.doi.org/10.1088/1751-8113/43/38/382002
http://dx.doi.org/10.1088/1751-8113/43/38/382002
http://dx.doi.org/10.1109/isvlsi.2011.30
http://dx.doi.org/10.1109/isvlsi.2011.30
http://dx.doi.org/10.1109/isvlsi.2011.30
http://dx.doi.org/10.1109/ised.2012.50
http://dx.doi.org/10.1109/ised.2012.50
http://dx.doi.org/10.1109/ised.2012.50
http://dx.doi.org/10.5120/16281-5852
http://dx.doi.org/10.5120/16281-5852
http://dx.doi.org/10.5120/16281-5852
http://dx.doi.org/10.1109/apccas.2006.342478
http://dx.doi.org/10.1109/apccas.2006.342478
http://dx.doi.org/10.1109/apccas.2006.342478
http://dx.doi.org/10.1109/mwscas.2005.1594420
http://dx.doi.org/10.1109/mwscas.2005.1594420
http://dx.doi.org/10.1109/mwscas.2005.1594420
http://dx.doi.org/10.1109/mwscas.2005.1594420
http://dx.doi.org/10.1109/issoc.2007.4427442
http://dx.doi.org/10.1109/issoc.2007.4427442
http://dx.doi.org/10.1109/issoc.2007.4427442
http://dx.doi.org/10.5121/vlsic.2010.1303
http://dx.doi.org/10.5121/vlsic.2010.1303
http://dx.doi.org/10.5121/vlsic.2010.1303
http://dx.doi.org/10.5121/vlsic.2010.1303

2242
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.12 DECEMBER 2018

[13] L. Ni, Z. Guan, and W. Zhu, “A general method of constructing
the reversible full-adder,” Third International Symposium on Intelli-
gent Information Technology and Security Informatics, pp.109–113,
2010.

[14] V. Kamalakannan, V. Shilpakala, and H.N. Ravi, “Design of
adder/subtractor circuit based on reversible gates,” International
Journal of Advanced Research in Electrical Electronics and Instru-
mentation Engineering, vol.2, no.8, pp.738–742, Aug. 2013.

[15] J. Kaur and H. Kaur, “Synthesis and designing of reversible
adder/subtracter circuits,” International Journal of Advanced Re-
search in Electrical Electronics and Instrumentation Engineering,
vol.3, no.5, pp.9325–9332, 2014.

[16] S. Moghimi and M.R. Reshadinezhad, “A novel 4×4 universal re-
versible gate as a cost efficient full adder/subtractor in terms of
reversible and quantum metrics,” International Journal of Modern
Education and Computer Science, vol.7, no.11, pp.28–34, DOI:
10.5815/ijmecs.2015.11.04, 2015.

[17] C. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev.,
vol.17, no.6, pp.525–532, 1973.

[18] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM J. Res. Dev., vol.5, no.3, pp.183–191, July 1961.

[19] D. Maslov, Reversible logic synthesis, Ph.D. thesis, The Faculty
of Computer Science, The University of New Brunswick, Canada,
2003.

[20] J. Donald and N.K. Jha, “Reversible logic synthesis with Fredkin
and Peres gates,” ACM J. Emerg. Technol. Comput. Syst., vol.4,
no.1, pp.1–19, 2008.

[21] D. Maslov and M. Saeedi, “Reversible circuit optimization via leav-
ing the boolean domain,” IEEE Trans. Comput.-Aided Design In-
tegr. Circuits Syst., vol.30, no.6, pp.806–816, 2011.

[22] M. Saeedi and I.L. Markov, “Synthesis and optimization of re-
versible circuits a survey,” ACM Comput. Surv., vol.45, no.2, pp.21–
34, 2013.

[23] D. Maslov and G.W. Dueck, “Garbage in reversible designs of mul-
tiple output functions,” Proc. 6th International Symposium on Rep-
resentations and Methodology of Future Computing Technologies
(RM 2003), pp.162–170, Germany, March 2003.

[24] D. Maslov and G.W. Dueck, “Reversible cascades with minimal
garbage,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol.23, no.11, pp.1497–1509, Nov. 2004.

[25] D. Miller, R. Wille, and R. Drechsler, “Reducing reversible circuit
cost by adding lines,” IEEE International Symposium on Multiple-
Valued Logic, pp.217–222, 2010.

[26] D.M. Miller, “Lower cost quantum gate realizations of multiple-
control Toffoli gates,” IEEE Pacific Rim Conference on Commu-
nications, Computers and Signal Processing, pp.308–313, 2009.

[27] D.M. Miller and Z. Sasanian, “Lowering the quantum gate cost of
reversible circuits,” 53rd IEEE International Midwest Symposium
on Circuits and Systems, pp.260–263, 2010.

[28] M. Szyprowski and P. Kerntopf, “Reducing quantum cost in
reversible Toffoli circuits,” Proc. 10th Reed-Muller Workshop,
pp.127–136, 2011.

[29] P. Kerntopf and M. Szyprowski, “Reducing quantum cost of pairs
of multi-control Toffoli gates,” International workshop on Boolean
Problems, pp.263–268, 2012.

[30] D. Grosse, X. Chen, G.W. Dueck, and R. Drechsler, “Exact SAT-
based Toffoli network synthesis,” Proc. 17th Great Lakes Sympo-
sium on VLSI, pp.96–101, Italy, 2007.

[31] G.W. Dueck, D. Maslov, and D.M. Miller, “Techniques for the syn-
thesis of reversible Toffoli networks,” ACM Trans. Des. Autom.
Electron. Syst., vol.12, no.4, pp.1–28, 2007.

[32] O. Golubitsky, S.M. Falconer, and D. Maslov, “Synthesis of the op-
timal 4-bit reversible circuits,” Proc. 47th Design Automation Con-
ference, pp.653–656, USA, June 2010.

[33] Z. Sasanian and D.M. Miller, “Mapping a multiple-control Tof-
foli gate cascade to an elementary quantum gate circuit,” Proc. 2nd
Workshop on Reversible Computation, pp.83–90, 2010.

[34] Z. Sasanian and D.M. Miller, “Transforming MCT circuits to
NCVW circuits,” Reversible Computation, RC 2011, A. De. Vos and
R. Wille, eds., LNCS 7165, pp.77–88, Springer-Verlag, 2011.

[35] R. Wille, D.M. Miller, and Z. Sasanian, “Elementary quantum gate
realizations for multiple-control Toffoli gates,” Proc. 41st IEEE
International Symposium on Multiple-Valued Logic, pp.288–293,
2011.

[36] R.P. Feynman, “Quantum mechanical computers,” Optic News,
vol.11, no.2, p.11, Feb. 1985.

[37] P. Gupta, A. Agrawal, and N.K. Jha, “An algorithm for synthesis
of reversible logic circuits,” IEEE Trans. Comput.-Aided Design In-
tegr. Circuits Syst., vol.25, no.11, pp.2317–2330, 2006.

[38] RevLib: online resource for reversible benchmarks, http://www.
revlib.org

[39] M.M. Rahman, Synthesis of Reversible Logic, Ph.D. dissertation, In
the Graduate Academic Unit of Faculty of Computer Science, The
University of New Brunswick, Dec. 2014.

[40] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press, 2000.

[41] W. Hung, X. Song, G. Yang, and M. Perkowski, “Optimal synthesis
of multiple output Boolean functions using a set of quantum gates
by symbolic reachability analysis,” IEEE Trans. Comput.-Aided De-
sign Integr. Circuits Syst., vol.25, no.9, pp.1652–1663, 2006.

[42] R. Wille and R. Drechsler, Towards a Design Flow for Reversible
Logic, Springer, 2010.

[43] O. Golubitsky and D. Maslov, “A study of optimal 4-bit reversible
Toffoli circuits and their synthesis,” IEEE Trans. Comput., vol.61,
no.9, pp.1341–1353, Sept. 2012.

Md Belayet Ali received his B.Sc. degree
from Mawlana Bhashani Science and Technol-
ogy University, Tangail, Bangladesh, in 2008.
He received his M.E. degree from Iwate Uni-
versity, Morioka, Japan, in 2016. He is cur-
rently working toward his Ph.D. at Iwate Uni-
versity. His research interests include re-
versible/quantum logic synthesis and optimiza-
tion algorithms.

Takashi Hirayama received his B.E., M.E.,
and Ph.D. degrees in computer science from
Gunma University in 1994, 1996, and 1999, re-
spectively. From 1999 to 2001 he was a re-
search assistant in the Department of Electri-
cal and Electronics Engineering, Ashikaga In-
stitute of Technology. He is currently a lec-
turer in the Department of Electrical Engineer-
ing and Computer Science, Faculty of Engineer-
ing, Iwate University. His research interests in-
clude high level and logic synthesis and design

for testability of VLSIs.

http://dx.doi.org/10.1109/iitsi.2010.25
http://dx.doi.org/10.1109/iitsi.2010.25
http://dx.doi.org/10.1109/iitsi.2010.25
http://dx.doi.org/10.1109/iitsi.2010.25
http://dx.doi.org/10.15662/ijareeie.2015.0402033
http://dx.doi.org/10.15662/ijareeie.2015.0402033
http://dx.doi.org/10.15662/ijareeie.2015.0402033
http://dx.doi.org/10.15662/ijareeie.2015.0402033
http://dx.doi.org/10.5815/ijmecs.2015.11.04
http://dx.doi.org/10.5815/ijmecs.2015.11.04
http://dx.doi.org/10.5815/ijmecs.2015.11.04
http://dx.doi.org/10.5815/ijmecs.2015.11.04
http://dx.doi.org/10.5815/ijmecs.2015.11.04
http://dx.doi.org/10.1147/rd.176.0525
http://dx.doi.org/10.1147/rd.176.0525
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1145/1330521.1330523
http://dx.doi.org/10.1145/1330521.1330523
http://dx.doi.org/10.1145/1330521.1330523
http://dx.doi.org/10.1109/tcad.2011.2105555
http://dx.doi.org/10.1109/tcad.2011.2105555
http://dx.doi.org/10.1109/tcad.2011.2105555
http://dx.doi.org/10.1145/2431211.2431220
http://dx.doi.org/10.1145/2431211.2431220
http://dx.doi.org/10.1145/2431211.2431220
http://dx.doi.org/10.1109/tcad.2004.836735
http://dx.doi.org/10.1109/tcad.2004.836735
http://dx.doi.org/10.1109/tcad.2004.836735
http://dx.doi.org/10.1109/ismvl.2010.48
http://dx.doi.org/10.1109/ismvl.2010.48
http://dx.doi.org/10.1109/ismvl.2010.48
http://dx.doi.org/10.1109/pacrim.2009.5291355
http://dx.doi.org/10.1109/pacrim.2009.5291355
http://dx.doi.org/10.1109/pacrim.2009.5291355
http://dx.doi.org/10.1109/mwscas.2010.5548653
http://dx.doi.org/10.1109/mwscas.2010.5548653
http://dx.doi.org/10.1109/mwscas.2010.5548653
http://dx.doi.org/10.1145/1228784.1228812
http://dx.doi.org/10.1145/1228784.1228812
http://dx.doi.org/10.1145/1228784.1228812
http://dx.doi.org/10.1145/1278349.1278355
http://dx.doi.org/10.1145/1278349.1278355
http://dx.doi.org/10.1145/1278349.1278355
http://dx.doi.org/10.1145/1837274.1837440
http://dx.doi.org/10.1145/1837274.1837440
http://dx.doi.org/10.1145/1837274.1837440
http://dx.doi.org/10.1007/978-3-642-29517-1_7
http://dx.doi.org/10.1007/978-3-642-29517-1_7
http://dx.doi.org/10.1007/978-3-642-29517-1_7
http://dx.doi.org/10.1109/ismvl.2011.54
http://dx.doi.org/10.1109/ismvl.2011.54
http://dx.doi.org/10.1109/ismvl.2011.54
http://dx.doi.org/10.1109/ismvl.2011.54
http://dx.doi.org/10.1364/on.11.000011
http://dx.doi.org/10.1364/on.11.000011
http://dx.doi.org/10.1109/tcad.2006.871622
http://dx.doi.org/10.1109/tcad.2006.871622
http://dx.doi.org/10.1109/tcad.2006.871622
http://www.revlib.org
http://www.revlib.org
http://dx.doi.org/10.1109/tcad.2005.858352
http://dx.doi.org/10.1109/tcad.2005.858352
http://dx.doi.org/10.1109/tcad.2005.858352
http://dx.doi.org/10.1109/tcad.2005.858352
http://dx.doi.org/10.1007/978-90-481-9579-4
http://dx.doi.org/10.1007/978-90-481-9579-4
http://dx.doi.org/10.1109/tc.2011.144
http://dx.doi.org/10.1109/tc.2011.144
http://dx.doi.org/10.1109/tc.2011.144

ALI et al.: FUNCTION DESIGN FOR REVERSIBLE ADDER/SUBTRACTOR BLOCKS AND ARITHMETIC LOGIC UNITS
2243

Katsuhisa Yamanaka received his B.E.,
M.E., and Ph.D. degrees in computer science
from Gunma University in 2003, 2005 and 2007,
respectively. He is an assistant professor of the
Department of Electrical Engineering and Com-
puter Science, Faculty of Engineering, Iwate
University. His research interests include com-
binatorial algorithms and graph algorithms.

Yasuaki Nishitani received his B.E. de-
gree in electrical engineering, M.E. and Ph.D.
degrees in computer science from Tohoku Uni-
versity in 1975, 1977, and 1984, respectively. In
1981 he joined the Software Product Engineer-
ing Laboratory at the NEC Corporation. From
1987 to 2000 he was an associate professor in
the Department of Computer Science, Gunma
University. From 2000 to 2017, he was a profes-
sor in the Department of Electrical Engineering
and Computer Science, Faculty of Engineering,

Iwate University. His research interests include switching theory, software
engineering, and distributed algorithms.

