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A Lower Bound on the Number of Toffoli Gates in

Reversible Logic Circuits

Masayuki HIGASHIOHNO†∗, Takashi HIRAYAMA††, and Yasuaki NISHITANI††, Members

SUMMARY We present a lower bound on the number of
gates in reversible logic circuits that represent a given reversible
logic function, in which the circuits are assumed to consist of
Toffoli gates and have no redundant input/output lines. Experi-
mental results of computing lower bounds on randomly-generated
reversible logic functions are also given.
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1. Introduction

The synthesis of reversible logic circuits realizing given
reversible functions has been studied as the basic re-
search for the quantum logic circuits. For that reason,
NOT, CNOT, and Toffoli gates are used for synthesiz-
ing reversible logic circuits as well as quantum ones [2],
[5]. Figure 1 shows an example of Toffoli gates. In this
paper, NOT, CNOT, and k-Toffoli are referred to as
Toffoli gates. NOT and CNOT can be considered as
0-Toffoli and 1-Toffoli, respectively. We deal with the
synthesis of reversible logic circuits that consist of Tof-
foli gates and have no redundant input/output lines.

We present a lower bound on the number of Tof-
foli gates in reversible logic circuits that represent a
given reversible logic function. This is the first lower
bound for given specific reversible functions although
lower bounds for some class of reversible functions have
been known [3], [4].

2. Basic Definitions

In this paper, n-input single-output logic functions
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Fig. 1 Example of Reversible Gates.
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(“logic functions” for short) are represented by posi-
tive polarity Reed-Muller expressions (PPRMs) [1]. It
is known that any logic function can be represented
by the PPRM uniquely. For example, logic function
x1x̄2 + x2 is written as x1 ⊕ x2 ⊕ x1x2 in PPRM.

The composition of an n-input single-output logic
function f and an n-input n-output logic function F is
denoted by f ◦ F and is defined as the mathematical
function composition, i.e., the composite function f ′ =
f ◦ F is the n-input single-output logic function such
that f ′(X) = f(F (X)) for all the input vectors X ∈
{0, 1}n. Similarly, the composite function F1 ◦F2 of n-
input n-output logic functions F1 and F2 is the n-input
n-output logic function such that F ′(X) = F1(F2(X))
for all X ∈ {0, 1}n. Composition of functions is always
associative.

Here is the notation of an n-input n-output logic
function. Let xi (1 ≤ i ≤ n) be the variable that repre-
sents the i-th element of the input vector. By regarding
xi as a logic function, the composition xi◦F can be seen
as the logic function that represents the i-th output of
F . By letting fi = xi ◦F , F is denoted by fi and xi in
pairs as follows.

[f1/x1, f2/x2, . . . , fn/xn] where fi = xi ◦ F

Each fi/xi describes the i-th output and input. The
trivial case where fi = xi◦F = xi, or xi/xi is sometimes
omitted in the notation, for simplicity.

Example 1: {a, b, c} is a set of variables. F = [a ⊕
bc/a, b ⊕ 1/b, c/c] is a 3-input 3-output logic function,
where fi is written in PPRM. In this case, F can be also
represented as [a ⊕ bc/a, b ⊕ 1/b] by omitting the no-
tation of c/c. Generally, the composition of n-input
single-output logic function f and n-input n-output
logic function F can be considered as a substitution
in PPRMs, in which each variable x of f is replaced
with x ◦ F . Let f = c ⊕ ab and F = [a ⊕ bc/a,
b⊕1/b]. The composition f ◦F results in (c⊕ab)◦F =
(c◦F )⊕ (a◦F )(b◦F ) = c⊕ (a⊕ bc)(b⊕1) = c⊕ab⊕a.
And let F ′ = [a⊕ ab⊕ c/a, c⊕ ab/c]. The composition
F ′◦F results in [bc⊕c⊕ab/a, b⊕1/b, c⊕ab⊕a/c], whose
output functions x◦ (F ′ ◦F ) are obtained separately as
follows.

a ◦ (F ′ ◦ F ) = (a ◦ F ′) ◦ F = (a⊕ ab⊕ c) ◦ F
= bc⊕ c⊕ ab
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Fig. 2 Example of Reversible Logic Circuit.

b ◦ (F ′ ◦ F ) = (b ◦ F ′) ◦ F = b ◦ F
= b⊕ 1

c ◦ (F ′ ◦ F ) = (c ◦ F ′) ◦ F = (c⊕ ab) ◦ F
= c⊕ ab⊕ a

Definition 1: An n-input n-output logic function F
is called reversible if F is bijective.

Definition 2: The function of a Toffoli gate G is de-
noted by [x ⊕ p/x], where x is a variable and p is a
product term without x.

To discuss a lower bound for reversible functions,
we regard Toffoli gates as functions rather than devices,
hereafter. As functional properties, any Toffoli gate G
is reversible, whose inverse function is G itself. For
Toffoli gates Gi (1 ≤ i ≤ k), if F ′ = F ◦G1◦G2◦· · ·◦Gk,
F ′ ◦Gk ◦ · · · ◦G2 ◦G1 = F holds.

Definition 3: A reversible logic circuit is defined by a
sequence of Toffoli gates G1G2 . . . Gk, where k is called
the number of gates in the circuit. The reversible func-
tion realized by the circuit is the composition of gates
Gk ◦Gk−1 ◦ · · · ◦G1.

Example 2: Figure 2 shows a reversible logic circuit
with four gates, which is represented by G1G2G3G4 =
[a ⊕ bc/a][b ⊕ 1/b][c ⊕ ab/c][a ⊕ c/a]. The reversible
function F realized by the circuit is the composition of
these gates, i.e., G4◦G3◦G2◦G1 = [a⊕c/a]◦[c⊕ab/c]◦
[b⊕ 1/b] ◦ [a⊕ bc/a] = [a⊕ c/a] ◦ [c⊕ ab/c] ◦ [a⊕ bc/a,
b⊕ 1/b] = [a⊕ c/a] ◦ [a⊕ bc/a, b⊕ 1/b, c⊕ ab⊕ a/c] =
[bc⊕ c⊕ ab/a, b⊕ 1/b, c⊕ ab⊕ a/c].

For a given reversible function F , the synthesis
of reversible logic circuits can be seen as the problem
of obtaining a sequence of Toffoli gates G1 . . . Gk−1Gk

that satisfies F = Gk ◦ Gk−1 ◦ · · · ◦ G1. Since there
exist many circuits to realize F , the number of gates k
in the resulting circuit varies with the synthesizers. As
a theoretical research, we consider a lower bound on k
for a given function F .

3. A Lower Bound on the Number of Toffoli
Gates in Reversible Logic Circuits

3.1 Lower Bound Theorem

Below, we define the size σ(F ) of a reversible function F
to evaluate the number of gates in the reversible circuits
that realize F .

Definition 4: The number of product terms of the
PPRM of a logic function f is denoted by τ(f). We
define σx(f) = τ(x ⊕ f), where x is a variable. Let F
be a reversible function, and V ar be a set of variables.
The size σ(F ) of F is defined as follows.

σ(F ) =
∑

x∈V ar

σx(x ◦ F )

Example 3: For the reversible function F = [bc⊕c⊕
ab/a, b⊕1/b, c⊕ab⊕a/c], which was given in Example 2
(Fig. 2), σa(a ◦F ) = τ(a⊕ bc⊕ c⊕ ab) = 4, σb(b ◦F ) =
τ(b ⊕ b ⊕ 1) = 1, and σc(c ◦ F ) = τ(c ⊕ c ⊕ ab ⊕ a) =
2. Thus, the size σ(F ) of F is 7. If F is an identity
function, e.g., [a/a, b/b, c/c], the size is σ(F ) = 0.

Lemma 1: For any reversible function F and any Tof-
foli gate G = [a⊕ p/a], the following inequality holds.

2σ(F ) + 1 ≥ σ(F ◦G)

The proof of Lemma 1 will be given in Section 3.2.
In the rest of this section, we discuss a lower bound on
the number of gates in reversible circuits by using the
above lemma.

Definition 5: Among all reversible circuits that re-
alize reversible function F , those with the minimum
number of gates are called the minimum circuits of F .
The number of gates in a minimum circuit is denoted
by γ(F ).

Theorem 1 (Lower Bound Theorem): For any re-
versible function F , the inequality 2γ(F ) − 1 ≥ σ(F ),
i.e., γ(F ) ≥ dlog(σ(F ) + 1)e, holds.

(proof) The proof is by mathematical induction on
γ(F ). If γ(F ) = 0, 2γ(F ) − 1 = 0 holds. In addi-
tion, from γ(F ) = 0, F is the identity function. Then,
we have σ(F ) = 0. Thus, the base case is proved.

Assume that the theorem holds for reversible func-
tions Fm such that γ(Fm) = m (m ≥ 0). It must
be shown that the theorem holds for reversible func-
tions F such that γ(F ) = m + 1. Such a function F
can be written by the composition of some reversible
function Fm with γ(Fm) = m and some Toffoli gate
[a⊕p/a], i.e., F = Fm◦ [a⊕p/a]. Then, from Lemma 1,
2σ(Fm) + 1 ≥ σ(Fm ◦ [a ⊕ p/a]) = σ(F ) holds. Using
the induction hypothesis 2m − 1 ≥ σ(Fm), we have
2m+1 − 1 = 2 · (2m − 1) + 1 ≥ 2σ(Fm) + 1 ≥ σ(F ). 2

Example 4: For the reversible function F = [b⊕ac⊕
bc/a, 1⊕a⊕c⊕ab⊕ac⊕bc/b, c⊕1⊕b⊕ab⊕ac⊕bc/c],
σ(F ) = 16 holds. From the lower bound theorem,
dlog(σ(F ) + 1)e = dlog 17e = 5 or more gates are
required in the reversible circuits to realize F . In
fact, F is represented by the composition of five gates
[b ⊕ c/b] ◦ [c ⊕ ab/c] ◦ [a ⊕ bc/a] ◦ [b ⊕ a/b] ◦ [c ⊕ 1/c],
which results in γ(F ) = 5.
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3.2 Proof of Lemma 1

As a preliminary to the proof, we define δx(f) =
σx(f)−τ(f) for logic function f and a variable x. Since
σx(f) = τ(x⊕f), δx(f) = τ(x⊕f)−τ(f) holds. There-
fore, δx(f) = −1 if the product x appears in the PPRM
of f , and δx(f) = 1 otherwise. Now we give the proof
of Lemma 1 in the following.

Lemma 1 is proved if we have two inequalities:
2σa(a ◦ F ) − σa(a ◦ F ◦ G) ≥ −1 for the variable a
used in the Toffoli gate G = [a⊕p/a], and 2σx(x◦F )−
σx(x◦F ◦G) ≥ 0 for any variable x except a. We prove
these inequalities below.

For a variable x, let f be x ◦ F , where x may be
a. From the positive Davio expansion [1], the logic
function f can be represented by f = afa ⊕ f0, where
fa and f0 are logic functions whose PPRMs do not have
any products containing a. Then, f ◦G is represented
as follows.

f ◦G = (a⊕ p)fa ⊕ f0 = afa ⊕ pfa ⊕ f0

Note that τ(afa) = τ(fa) and τ(f) = τ(fa)+τ(f0) hold
as a property of the positive Davio expansion. Let h be
the logic function defined as the EXOR combination
of common products between PPRMs of pfa and f0.
Then, we have τ(pfa) = τ(pfa ⊕ h) + τ(h), τ(f0) =
τ(f0⊕h)+τ(h), and τ(pfa⊕f0) = τ(pfa⊕h)+τ(f0⊕h).
Since τ(fa) ≥ τ(pfa), the following inequality holds for
2τ(f)− τ(f ◦G).

2τ(f)− τ(f ◦G)

= 2(τ(fa) + τ(f0))− (τ(fa) + τ(pfa ⊕ f0))

= τ(fa) + 2τ(f0)− τ(pfa ⊕ f0)

≥ τ(pfa) + 2τ(f0)− τ(pfa ⊕ f0)

= 3τ(h) + τ(f0 ⊕ h)

Since 2σx(f)−σx(f ◦G) = 2(τ(f)+δx(f))−(τ(f ◦G)+
δx(f ◦G)) holds from the definition of δx, we have the
following inequality.

2σx(f)− σx(f ◦G)

≥ 3τ(h) + τ(f0 ⊕ h) + 2δx(f)− δx(f ◦G) (1)

We show that the right-hand side of Equation (1) is
more than or equal to −1 in the case of x = a, and is
more than or equal to 0 in the case of x 6= a.

(Case x = a) δx(f) = δa(afa⊕ f0) = δa(afa) holds
in this case. Similarly, δx(f ◦G) = δa(afa⊕pfa⊕f0) =
δa(afa) holds. Thus, the right-hand side of Equa-
tion (1) is represented by

3τ(h) + τ(f0 ⊕ h) + δa(afa).

Since the values of τ are always nonnegative and the
value of δa is either −1 or 1, we have 2σa(f) − σa(f ◦
G) ≥ −1.

(Case x 6= a) In this case, δx(f) = δx(f0) and

δx(f ◦ G) = δx(pfa ⊕ f0) hold. Thus, the right-hand
side of Equation (1) is represented by

3τ(h) + τ(f0 ⊕ h) + 2δx(f0)− δx(pfa ⊕ f0) (2)

It is obvious that the formula (2) is more than 0 if
δx(f0) = 1, since the values of τ are nonnegative and
the values of δx are −1 or 1. Therefore, we consider
the case of δx(f0) = −1 only, which can be divided into
two sub cases: the product x appears in the PPRM of
h or f0 ⊕ h. If h has the product x, it does not appear
in pfa ⊕ f0 from the definition of h. Then, we have
2δx(f0)−δx(pfa⊕f0) = −3. Because of τ(h) ≥ 1 in this
case, the formula (2) is more than or equal to 0. If f0⊕h
has the product x, 2δx(f0) − δx(pfa ⊕ f0) = −1 holds
since the product also appears in pfa ⊕ f0. Because of
τ(f0⊕h) ≥ 1 in this case, the formula (2) is more than
or equal to 0.

4. Some notes on the lower bound with σ

4.1 Simple lower bound with τ

It is a natural idea to predict the number of gates of a
circuit from the size of the function representation. As
the size of F , we defined σ(F ) =

∑
x∈V ar τ(x⊕ x ◦ F )

in the previous section. More simply, the total number
of products τ(F ) =

∑
x∈V ar τ(x ◦ F ) can be another

measure of size of F . In this section, we compare the
two lower bounds with σ(F ) and τ(F ).

Under the measure of τ(F ), the swap function
S = [b/a, a/b] and the identity function I = [a/a, b/b]
cannot be distinguished, evaluating to the same, τ(S) =
τ(I) = 2. Meanwhile σ(F ) can distinguish them as
σ(S) = 4 and σ(I) = 0. Moreover the lower bound
with σ(S) tells us that the swap function S requires
three or more gates.

As an inequality with τ(F ), 2τ(F ) ≥ τ(F ◦ G)
can be obtained by the similar way of the proof of
Lemma 1. Similarly to Theorem 1, the inequality leads
to n·2γ(F ) ≥ τ(F ), i.e., γ(F ) ≥ dlog(τ(F )/n)e, where F
is any reversible function with n variables. Considering
the values σ(F ) and τ(F ) are essentially similar, this
lower bound dlog(τ(F )/n)e is inferior to the proposed
one dlog(σ(F ) + 1)e.

Furthermore, the maximum τ(F ) is roughly n2n,
and the resulting lower bound is dlog(τ(F )/n)e = n.
On the other hand, the maximum σ(F ) is also roughly
n2n, and the resulting lower bound is dlog(σ(F )+1)e =
n + log n. The lower bound with σ(F ) is larger than
that with τ(F ) also in this comparison.

4.2 Comparison with a trivial lower bound

There is a trivial lower bound on the number of gates
in reversible circuits. After we describe it, we give the
experimental results to compare the trivial lower bound
and our proposed one with σ.
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Table 1 Average of Lower Bounds.

Reversible functions dlog(σ(F ) + 1)e ν(F )
3-variable functions 3.88 2.96
4-variable functions 5.36 4.00
5-variable functions 6.99 5.00
6-variable functions 8.00 6.00
8-variable functions 10.44 8.00

10-variable functions 13.00 10.00

Definition 6: For a reversible function F , ν(F ) de-
notes the number of variables x such that x ◦ F 6= x.

Suppose that we have a reversible function F and
a Toffoli gate G = [a ⊕ p/a]. For variables x except a,
if x ◦ F = x, then x ◦ F ◦ G = x holds. If a ◦ F = a,
a◦F ◦G 6= a holds. Thus, we have the following lemma.

Lemma 2: For any reversible function F and any Tof-
foli gate G, ν(F ) + 1 ≥ ν(F ◦G) holds.

From the above lemma with ν(F ), we have a trivial
lower bound on γ(F ).

Theorem 2 (Trivial Lower Bound): For any reversible
function F , γ(F ) ≥ ν(F ) holds.

The proof can be done simply by mathematical
induction on γ(F ) and omitted in this paper. Since
both Theorem 1 with σ and Theorem 2 with ν are lower
bounds on γ(F ), we have a mixed lower bound to pick
up a larger one as below.

Theorem 3 (Lower Bound Theorem): For any re-
versible function F , γ(F ) ≥ max{ν(F ), dlog(σ(F ) +
1)e} holds.

To make a comparison between the two lower
bounds ν(F ) and dlog(σ(F ) + 1)e, we performed ex-
periments on them for reversible functions with various
numbers of variables. We computed dlog(σ(F )+1)e and
ν(F ) for all (40,320) 3-variable functions and 50,000
randomly-generated n-variable functions, where n = 4,
5, 6, 8, and 10.

The averages of lower bounds for those functions
are given in Table 1. The lower bounds with σ are
larger than those with ν; dlog(σ(F )+1)e is approaching
n + log n with increasing n while ν(F ) is approaching
n.

Table 2 shows the distribution of functions
such that the difference between two lower bounds,
dlog(σ(F ) + 1)e − ν(F ), is −1, 0, 1, 2, and 3. In our
experiments, dlog(σ(F ) + 1)e was larger than ν(F ) for
almost all functions except for 25 3-variable functions,
and the difference increased with the number of vari-
ables.

5. Conclusion

We defined the size σ(F ) of reversible logic functions
F , and presented a lower bound on the number of
Toffoli gates in reversible logic circuits for F . This

Table 2 Number of Functions on the Basis of Difference be-
tween Two Lower Bounds.

Number of functions
Diff. 3-var. 4-var. 5-var. 6-var. 8-var. 10-var.

−1 25 0 0 0 0 0
0 4,113 15 0 0 0 0
1 35,091 32,104 586 0 0 0
2 1,091 17,881 49,414 50,000 27,957 0
3 0 0 0 0 22,043 50,000

Total 40,320 50,000 50,000 50,000 50,000 50,000

is the first non-trivial lower bound for given specific
reversible functions. We experimented with randomly-
generated reversible functions, and have confirmed that
the proposed lower bound is larger than the trivial
lower bound in the most cases. As a closing remark,
it should be mentioned that Lemma 1 for establishing
our lower bound has not used the reversibility of func-
tions. Therefore, a better lower bound may be found
by utilizing the reversibility.
Acknowledgments The authors thank the anony-
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