
1278
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.9 SEPTEMBER 1999

PAPER

Easily Testable Realization Based on Single-Rail-Input

OR-AND-EXOR Expressions

Takashi HIRAYAMA†∗, Student Member, Goro KODA†, Yasuaki NISHITANI†,
and Kensuke SHIMIZU†, Members

SUMMARY It is known that AND-EXOR two-level net-
works obtained by AND-EXOR expressions with positive liter-
als are easily testable. They are based on the single-rail-input
logic, and require (n + 4) tests to detect their single stuck-at
faults, where n is the number of the input variables. We present
three-level networks obtained from single-rail-input OR-AND-
EXOR expressions and propose a more easily testable realization
than the AND-EXOR networks. The realization is an OR-AND-
EXOR network which limits the fan-in of the AND and OR gates
to n/r and r respectively, where r is a constant (1 ≤ r ≤ n). We
show that only (r + n/r) tests are required to detect the single
stuck-at faults by adding r extra variables to the network.
key words: logic synthesis, exclusive-or, single stuck-at fault,
easily testable realization

1. Introduction

With the increasing complexity of VLSI circuitry, it is
important to reduce the costs related to the testing pro-
cess. Recently design techniques that are easily testable
have been widely used to reduce the time for testing [1].

One of the classic realizations for testability is pos-
itive polarity Reed-Muller expression (PPRM) based
networks. A PPRM is the exclusive-or (EXOR) of
product terms with positive literals, and the network
which realizes a PPRM results in a two-level AND-
EXOR network. Reddy [6] showed that the single stuck-
at faults in a PPRM network can be detected by (n+4)
tests that are independent of the functions realized,
where n is the number of input variables. An exten-
sion to multiple stuck-at faults of PPRM networks was
given in [7].

Afterward, a number of easily testable realizations
with EXOR gates have been proposed. In Sarabi-
Perkowski [8]’s method, single stuck-at faults can be
detected by the tests similar to Reddy’s. Yamada [12]
presented a method to detect single stuck-at and bridg-
ing faults. Pradham [5] and Sasao [11] dealt with mul-
tiple stuck-at faults. These easily testable realizations
require fewer gates than the PPRM realization by us-
ing both positive and negative literals. Every realiza-
tion, however, requires O(n) or more tests to detect the
faults.

Manuscript received August 6, 1998.
Manuscript revised February 1, 1999.

†The authors are with the Faculty of Engineering,
Gunma University, Kiryu-shi, 376–8515 Japan.

∗Presently, with Ashikaga Institute of Technology.

We propose an easily testable realization based
on Single-rail-input Or-And-Exor expressions (SOAEs),
which consist of positive literals as well as PPRMs.
Single-rail-input networks obtained from the realiza-
tion can be easily implemented by MOS networks. In
this paper, we first give an extension of PPRMs to the
multiple-valued-input logic. Multiple-valued-input lit-
erals in the extension can be realized by sum terms
with positive literals. Then, we present an expansion
method to obtain SOAEs. SOAEs are realized by three-
level OR-AND-EXOR networks with fan-in limitations
such that every OR gate has r or less inputs and every
AND gate has n/r or less inputs, where r is a constant
(1 ≤ r ≤ n). These three-level networks are called
SOAE networks. Our goal is to reduce tests rather
than to reduce gates. We finally show that all the sin-
gle stuck-at faults in an SOAE network can be detected
by (r + n/r) tests by adding r extra variables to the
network. If n = r2 holds, the number of tests for this
realization will be minimum, that is, 2

√
n.

2. Preliminaries

An arbitrary logic function can be represented by the
positive polarity Reed-Muller expression (PPRM). In
this section, we give the definition of PPRMs and the
testability of PPRM-based networks.

Definition 1: For a function f and a variable x, the
subfunction of f restricted to x = 0 (x = 1) is denoted
by fx̄ (fx). ✷

The following theorem is the basis of the expansion
with EXORs [11].

Theorem 1 (expansion theorem): A logic function f
can be expanded as follows.

f = x̄1fx̄1 ⊕ x1fx1 Shannon
f = fx̄1 ⊕ x1(fx̄1 ⊕ fx1) positive Davio
f = fx1 ⊕ x̄1(fx̄1 ⊕ fx1) negative Davio

✷

The expression of a function f obtained by apply-
ing the positive Davio expansion recursively is called
the Positive Polarity Reed-Muller expression (PPRM).
(Similarly the expression obtained by applying the neg-
ative Davio expansion recursively is called the Negative
Polarity Reed-Muller expression (NPRM).) A PPRM



HIRAYAMA et al: TESTABLE REALIZATION BASED ON OR-AND-EXOR EXPRESSIONS
1279

Fig. 1 PPRM network.

can be realized by the two-level AND-EXOR network,
which is called the PPRM network.

Example 1: Figure 1 shows the PPRM network of
f = x1x2x3⊕x2x3⊕x1x3⊕1. The constant input (CI)
line is labeled x0. ✷

This paper deals with the single stuck-at fault
model because it covers a wide range of possible faults
and has been most widely studied [1].

Definition 2: A stuck-at fault is the logical fault such
that a signal line is stuck at a fixed logic value v (v ∈
B, B = {0, 1}). Being stuck at v is denoted by s-a-v.
We assume that at most one stuck-at fault occurs on
the lines in a network. Input vectors to test whether
the network is faulty are called test vectors (or tests
shortly). ✷

It is well known that PPRM networks are easily
testable. A PPRM network consists of AND gates and
an EXOR gate; the input and output lines of AND
gates are called AND part, and those of the EXOR
gate are called EXOR part. In a PPRM network which
realizes an n-variable function, s-a-1 faults in the AND
part are detected by n tests, and s-a-0 faults in the
AND part and stuck-at (s-a-0 and s-a-1) faults in the
EXOR part are detected by 4 tests. The network thus
requires only (n+4) tests to detect all the single stuck-
at faults [6]. The tests are independent of the function.
In the following, we review the tests for a PPRM net-
work. In [6], an EXOR gate that has more than 2 input
lines is realized by the cascade of 2-input EXOR gates
(Fig. 9) and the tests for the EXOR part are given as
follows.

Test Set 1: (for s-a-0 faults in the AND part
and stuck-at faults in the EXOR part of a
PPRM network)

• x0 ← 0, the other xi’s ← 0.
• x0 ← 1, the other xi’s ← 0.
• x0 ← 0, the other xi’s ← 1.
• x0 ← 1, the other xi’s ← 1.

The third and fourth tests in Test Set 1 also detect s-a-0
faults in the AND part.

S-a-1 faults in the AND part are detected by the
following Test Set 2.

Test Set 2: (for s-a-1 faults in the AND part of
a PPRM network)

Generate the following tests for each k (1 ≤ k ≤ n),
where d denotes a don’t-care.

• x0 ← d, xk ← 0, the other xi’s ← 1.

Example 2: The tests for a PPRM network il-
lustrated by Fig. 1 are given. Test Set 1 has
4 tests: {(x0, x1, x2, x3)} = {(0, 0, 0, 0), (1, 0, 0, 0),
(0, 1, 1, 1), (1, 1, 1, 1)}. And Test Set 2 has n tests:
{(x0, x1, x2, x3)} = {(d, 0, 1, 1), (d, 1, 0, 1), (d, 1, 1, 0)}.
From the assumption that only one line is faulty in
a network, all the single stuck-at faults in Fig. 1 can be
detected by the above (n+ 4) tests. ✷

3. Extension of Testability to Multiple-Valued-
Input Functions

In this section, the easily testable realization of PPRMs
is extended to that of multiple-valued-input binary-
output functions [9], [10]. This extension will be applied
to the three-level networks in Sect. 4.

Definition 3: Let P = {0, 1, · · · , p − 1}, p ≥ 2, and
B = {0, 1}. f : Pn → B is called a p-valued-input
binary-output function, or a p-valued-input function,
shortly. ✷

Definition 4: For a nonempty subset S of P , XS is
called a literal of X . The value of XS is defined as
follows.

XS=
{
0 (X /∈ S)
1 (X ∈ S)

✷

In this paper, binary variables are written in lowercase
letters. Literals x{0}, x{1}, and x{0,1} of a binary vari-
able x represent ordinary literals x̄, x, and 1, respec-
tively.

Example 3: 4-valued-input literals X{1}, X{1,2,3},
and X{0,2} are represented by the truth tables (a), (b),
and (c) in Fig. 2, respectively. ✷

Definition 5: For a given set of p literals XS0, XS1 ,
· · ·, XSp−1 , matrix M ∈ Bp ×Bp such that




XS0

XS1

...
XSp−1


 = M




X{0}

X{1}
...

X{p−1}




is called the characteristic matrix, where the sum op-
eration is EXOR. Each element mij of M is obtained
as



1280
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.9 SEPTEMBER 1999

X X{1}
0 0
1 1
2 0
3 0

(a)

X X{1,2,3}
0 0
1 1
2 1
3 1

(b)

X X{0,2}
0 1
1 0
2 1
3 0

(c)

Fig. 2 Examples of multiple-valued-input literals.

mij =
{
0 (j /∈ Si)
1 (j ∈ Si)

.

✷

Lemma 1 and Theorem 2 are expansion methods
for p-valued-input functions [10].

Lemma 1: A p-valued-input function f(X1, X2,
· · · , Xn) can be expanded as

f =
⊕

0≤i≤p−1

X
{i}
1 · f

X
{i}
1

, (1)

where f
X

{i}
1

denotes f(i, X2, · · · , Xn). ✷

Theorem 2 (expansion theorem [10]): A function f :
Pn → B can be uniquely expanded in the form

f =
⊕

0≤i≤p−1

XSi · hi (2)

if and only if the characteristic matrix M is non-
singular. When M is non-singular, hi is represented
as 


h0

h1

...
hp−1


 = t(M−1)




fX{0}

fX{1}
...

fX{p−1}


 ,

where t(M−1) is the transpose of M−1. ✷

Equation (1) is the p-valued version of the Shannon
expansion, and Eq. (2) is the general form of expan-
sion. From Theorem 2, if S0, S1, · · ·, Sp−1 and the
non-singular matrix M are given, an expansion is de-
termined. By applying the expansion recursively, the
expression of f can be obtained.

Now, we restrict S0, S1, · · ·, Sp−1 of Theorem 2 in
order to obtain easily testable networks.

Definition 6: For a p-valued-input function, the ex-
pression obtained from the expansion defined by S0, S1,
· · ·, Sp−1 and the non-singular matrix M is called the
(a, b)-Restricted AND-EXOR expression ((a, b)-RAE) if
there exist two distinct constants a and b such that
a /∈ Si and b ∈ Si for any Si(�= S0). Let S0 be
{0, 1, · · · , p− 1}, i.e., literal XS0 is the constant func-
tion 1. ✷

Example 4: An example of p = 8 is shown.

Fig. 3 (0,7)-RAE network of an 8-valued-input function with
3 variables.




S0 = {0, 1, 2, 3, 4, 5, 6, 7}
S1 = { 1, 3, 5, 7}
S2 = { 2, 3, 6, 7}
S3 = { 1, 2, 3, 5, 6, 7}
S4 = { 4, 5, 6, 7}
S5 = { 1, 3, 4, 5, 6, 7}
S6 = { 2, 3, 4, 5, 6, 7}
S7 = { 1, 2, 3, 4, 5, 6, 7}

M =




1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 1 0 1 1 1
0 0 0 0 1 1 1 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1




M is non-singular and each of S1, S2, · · · , S7 satisfies
0 /∈ Si and 7 ∈ Si. Given eight literals and the non-
singular matrix M , an arbitrary 8-valued-input func-
tion f can be expanded as Eq. (2). Therefore the (0, 7)-
RAE of f can be obtained.

f = XS7
1 XS5

2 XS2
3 ⊕XS0

1 XS6
2 XS5

3 ⊕ 1 is an example
of (0, 7)-RAEs. The (0, 7)-RAE network is realized as
Fig. 3. The CI line is labeled x0 because it is a binary-
input line. Since the literal XS0

i corresponds to the
constant 1, lines leading from XS0

i to AND gates can
be omitted in (a, b)-RAE networks. ✷

As well as PPRM networks, (a, b)-RAE networks
are easily testable. Since the value of every literal in
(a, b)-RAEs is 0 for X = a and 1 for X = b, the tests
for (a, b)-RAE networks are obtained by substituting
the value a for the value 0 and the value b for the value
1 of tests for PPRM networks (Test Set 1). Thus tests
for (a, b)-RAE networks with n variables are written as
follows.

Test Set 3: (for s-a-0 faults in the AND part
and stuck-at faults in the EXOR part of an (a, b)-
RAE network)

• x0 ← 0, all Xi’s ← a.
• x0 ← 1, all Xi’s ← a.



HIRAYAMA et al: TESTABLE REALIZATION BASED ON OR-AND-EXOR EXPRESSIONS
1281

X1 X
{1}
1

0 0
1 1
2 0
3 0

=

x2 x1 x1x̄2

0 0 0
0 1 1
1 0 0
1 1 0

X1 X
{1,2,3}
1

0 0
1 1
2 1
3 1

=

x2 x1 x1 ∨ x2

0 0 0
0 1 1
1 0 1
1 1 1

Fig. 4 Realization of multiple-valued-input literals.

• x0 ← 0, all Xi’s ← b.
• x0 ← 1, all Xi’s ← b.

Test Set 4: (for s-a-1 faults in the AND part of
an (a, b)-RAE network)

Generate the following tests for each k (1 ≤ k ≤ n).

• x0 ← d, Xk ← a, the other Xi’s ← b.

From Test Set 3 and 4, an (a, b)-RAE network re-
quires (n+ 4) tests.

4. Single-Rail-Input OR-AND-EXOR Expan-
sion

By regarding 2r-valued numbers as r-bit binary num-
bers, a 2r-valued-input literal can be represented by a
binary-input function with r variables. Then testabil-
ity of (a, b)-RAEs can be also applied to easily testable
realizations for binary-input functions.

Example 5: 4-valued-input literalsX
{1}
1 andX

{1,2,3}
1

can be realized by x1x̄2 and x1 ∨ x2, respectively
(Fig. 4), which are 2-variable functions. ✷

Let the binary representation of an integer i be
(irir−1 · · · i1)2. A literal X

{i}
1 can be represented by

the minterm x
{ir}
r x

{ir−1}
r−1 · · ·x{i1}

1 because the value of
X

{i}
1 is 1 only if X1 = i. Hence,




X
{0}
1

X
{1}
1
...

X
{2r−1}
1


 =




x̄r · · · x̄2x̄1

x̄r · · · x̄2x1

...
xr · · ·x2x1




holds. From the above equation, Lemma 1 can be
rewritten as the following corollary.

Corollary 1: A function f can be expanded with re-
spect to variables x1, x2, · · ·, xr as follows.

f = t




x̄r · · · x̄2x̄1

x̄r · · · x̄2x1

...
xr · · ·x2x1







fx̄r···x̄2x̄1

fx̄r···x̄2x1

...
fxr···x2x1




✷

Corollary 1 corresponds to an equation obtained by ap-
plying the Shannon expansion with respect to r vari-
ables recursively.

To realize easily testable networks, we present an
expansion that generates OR-AND-EXOR expressions
corresponding to (0, 2r − 1)-RAEs. For r variables,
there exist 2r − 1 sum terms consisting of positive lit-
erals. These sum terms are used as 2r-valued-input
literals XS1

1 , XS2
1 , · · ·, X

S2r−1
1 , i.e.,

XSi
1 =

r∨
k=1

ikxk, (3)

where (irir−1 · · · i1)2 is the binary representation of i
(i �= 0). XS0

1 is defined as the constant function 1.
From Eq. (3), Si is determined as the set of input values
of the sum term whose output is 1. Then XSi

1 = 0 for
X1 = 0 = (00 · · · 0)2 and XSi

1 = 1 for X1 = 2r − 1 =
(11 · · · 1)2 hold for all literals XSi

1 except XS0
1 .

Example 6: If r = 3, 2r literals are given as follows.


XS0
1

XS1
1

XS2
1

XS3
1

XS4
1

XS5
1

XS6
1

XS7
1




=




1
x1

x2

x1 ∨ x2

x3

x1 ∨ x3

x2 ∨ x3

x1 ∨ x2 ∨ x3




These literals realize as the same literals as Example 4.
So, the matrix M for the above literals is written as
Example 4. ✷

Since literals XS1
1 , XS2

1 , · · ·, XS2r−1
1 are defined as

sum terms, the characteristic matrixM is non-singular.
Then we have the following expansion.

Theorem 3: Let XS0
1 be the constant function 1 and

XS1
1 , · · · , XS2r−1

1 be the sum terms defined by Eq. (3).
An arbitrary function f can be expanded as

f=[XS0
1 , XS1

1 , · · · , XS2r−1
1 ]




h0

h1

...
h2r−1




=
⊕

0≤i≤2r−1

XSi
1 · hi,

where hi is represented with the characteristic matrix
M as


h0

h1

...
h2r−1


 = t(M−1)




fx̄r···x̄2x̄1

fx̄r···x̄2x1

...
fxr···x2x1




✷



1282
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.9 SEPTEMBER 1999

We partition n variables {x1, x2, · · · , xn} into n/r
sets with r variables: {x1, · · · , xr}, {xr+1, · · · , x2r}, · · ·,
{xn−r+1, · · · , xn}, which can be regarded as 2r-valued
variables X1, X2, · · ·, Xn/r, respectively. For simplic-
ity, we assume n mod r = 0 (or n is a multiple of r).
Similar to Eq. (3), sum terms for these variable sets are
generally represented by

XSi

l+1 =
r∨

k=1

ikxrl+k, (4)

where 0 ≤ l ≤ n/r − 1. In Theorem 3, an n-variable
function f is expanded into EXOR of (n − r)-variable
functions hi by using sum termsXSi

1 of {x1, x2, · · · , xr}.
By applying the expansion to these subfunctions hi

with sum terms XSi
2 of {xr+1, · · · , x2r}, EXOR of

(n − 2r)-variable functions can be obtained. In this
way, by applying the expansion recursively until con-
stant functions are reached, the Single-rail-input Or-
And-Exor expression (SOAE) of f is finally obtained.
This expression is canonical for the constant r because
the subfunctions in Theorem 3 are uniquely defined.
As well as the Davio expansion, the time complexity
to obtain the SOAE of n-variable function f is O(2n)
because the total number of recursions is at most 2n.

There is another way to obtain the SOAE of
f . It is obtained by applying de Morgan’s theorem,
x̄j1 x̄j2 · · · x̄jr = (xj1 ∨ xj2 ∨ · · ·xjr )⊕ 1, to every prod-
uct term of the NPRM of f according to the variable
partition.

Example 7: If r = 2, 4 variables {x1, x2, x3, x4} are
partitioned into {x1, x2} and {x3, x4}. In this case,
NPRM f = x̄1x̄2 · x̄3x̄4 ⊕ x̄1 · x̄3x̄4 ⊕ x̄1x̄2 ⊕ x̄2 · x̄4 ⊕
x̄1⊕ x̄2⊕ x̄4⊕1 is converted into the SOAE as follows.

f={(x1 ∨ x2)⊕ 1}{(x3 ∨ x4)⊕ 1}
⊕(x1 ⊕ 1){(x3 ∨ x4)⊕ 1} ⊕ {(x1 ∨ x2)⊕ 1}
⊕(x2 ⊕ 1)(x4 ⊕ 1)⊕ (x1 ⊕ 1)⊕ (x2 ⊕ 1)
⊕(x4 ⊕ 1)⊕ 1

=(x1 ∨ x2)(x3 ∨ x4)⊕ x1(x3 ∨ x4)⊕ x2x4

✷

Networks realizing SOAEs are called SOAE net-
works, which form three-level OR-AND-EXOR net-
works with fan-in limitations such that every OR gate
has r or less inputs and every AND gate has n/r or less
inputs. This property is practical for logic synthesis be-
cause OR gates have different fan-in limitations from
AND gates generally. The proper limitations can be
set by r for the realization technology. In some special
cases, SOAE networks may result in two-level; for ex-
ample single-rail-input AND-EXOR networks (PPRM
networks) are obtained if r = 1, and single-rail-input
OR-EXOR networks are obtained if r = n.

Example 8: The 4-variable function f = x1x2x̄3x4 ∨

x1x2x3x4 ∨ x̄1x2x3x̄4 is expanded as follows.

• If r = 1, f = x1x2x4 ⊕ x1x2x3x4 ⊕ x1x2x3 ⊕
x2x3x4 ⊕ x2x3.
• If r = 2, f = (x1∨x2)(x3∨x4)⊕x1(x3∨x4)⊕x2x4.
• If r = 4, f = (x1 ∨ x2 ∨ x3 ∨ x4)⊕ (x1 ∨ x3 ∨ x4)⊕
(x1 ∨ x2)⊕ (x2 ∨ x4)⊕ x1 ⊕ x2 ⊕ x4. ✷

Since SOAE networks are based on the single-rail-
input logic, they can be implemented by MOS gates
easily. An EXOR gate can be also implemented by a
cascade (see Sect. 6.3) of two-input MOS gates which
realize f = x⊕ y[4], and by assigning proper value to
the CI line x0. Although an SOAE network requires
more gates than a PPRM network because of the fan-
in limitations, the hardware cost between the two net-
works can be equal in the MOS gate implementation.
Since 2r subfunctions appear with respect to r variables
in the expansion of Theorem 3, and also in the positive
Davio expansion 2r subfunctions appear with respect to
r variables as well as Corollary 1, the number of AND
gates in a PPRM network is equal to that of OR-AND
subnetworks in an SOAE network on average. In MOS
logic, an OR-AND-INVERT network with n inputs can
be implemented by one MOS gate, whose cost is virtu-
ally equal to a NAND gate with same inputs. Therefore
the hardware cost for an SOAE network is equal to a
PPRM network on average.

5. Easily Testable Realization

Since SOAEs with n variables correspond to (0, 2r−1)-
RAEs with n/r variables, all the single stuck-at faults
in the AND and EXOR parts of SOAE networks are
detected by the (n/r + 4) tests of Test Set 3 and 4,
where the value 0 and (2r− 1) in the tests are assigned
to OR gates in binary numbers. However, not all the
faults in the OR part are detected by these tests; every
s-a-1 fault is detected while an s-a-0 fault may not be
detected. To detect all the single s-a-0 faults in the OR
part, additional tests are required.

Simply, all the single s-a-0 faults in the OR part of
an SOAE network are detected by the following tests.

Test Set 5: (for s-a-0 faults in the OR part of a
straightforward SOAE network)

Generate the following tests for each (l, k)
(0 ≤ l ≤ n/r − 1, 1 ≤ k ≤ r)

• x0 ← d, xrl+k ← 1, xrl+j ← 0 (1 ≤ j ≤ r, j �= k),
the other xi’s ← 1.

These tests detect s-a-0 faults on the input lines spec-
ified by k of the OR gate specified by l. Adding these
n tests, the total number of tests is (n + n/r + 4). It
is slightly larger than the number of tests for PPRM
networks, (n+ 4).

If r extra variables for the testing purpose are
added to an SOAE network, the tests for s-a-0 faults in



HIRAYAMA et al: TESTABLE REALIZATION BASED ON OR-AND-EXOR EXPRESSIONS
1283

Fig. 5 Straightforward SOAE network.

Fig. 6 Easily testable SOAE network.

the OR part can be reduced. The r variables are called
testing variables and are denoted by t1, t2, · · · , tr. In
the following, an easily testable realization for SOAEs
with testing variables is described. The tests for the
easily testable SOAE networks are given in Sect. 6.

From Eq. (4), sum terms in an SOAE are repre-
sented by

∨r
k=1 ikxrl+k = (i1xrl+1 ∨ i2xrl+2 ∨ · · · ∨

irxrl+r) (0 ≤ l ≤ n/r−1). To be easily testable, all the
sum terms

∨r
k=1 ikxrl+k in an SOAE are replaced with∨r

k=1(ikxrl+k ∨ īktk). This means that either xrl+k or
tk is used as the input line of OR gates for each ik, and
that every OR gate has exactly r inputs.

Example 9: Figure 5 shows the straightforward
SOAE network with r = 3 realizing f = (x1 ∨ x2 ∨
x3)(x4 ∨ x6)x8 ⊕ (x5 ∨ x6)(x7 ∨ x9) ⊕ 1. The line x0

represents the CI line. This example corresponds to
the network of Fig. 3, whose literals are realized by OR
gates in Fig. 5. On the other hand, Fig. 6 shows its eas-
ily testable realization. This network is obtained from
the modified expression f = (x1 ∨ x2 ∨ x3)(x4 ∨ t2 ∨
x6)(t1 ∨ x8 ∨ t3)⊕ (t1 ∨ x5 ∨ x6)(x7 ∨ t2 ∨ x9)⊕ 1. ✷

In normal operation, the easily testable networks
obtained from the above modification are functionally
equivalent to the straightforward networks if the value 0
is assigned to t1, t2, · · · , tr. The easily testable network
require the CI line x0 to test the primary output (PO)
line. If an SOAE has the constant 1, the value 1 is
assigned to the line x0 in normal operation. If not, the
value 0 is assigned.

6. Fault Detection for Easily Testable Net-
works

In this section, tests for the easily testable SOAE net-
works described in Sect. 5 are shown.

6.1 Tests for S-a-0 Faults in the AND and OR Parts

The following tests detect s-a-0 faults in the AND and
OR parts. In the tests, testing variables t1, t2, · · · , tr
are fully exploited to detect the faults.

Test Set 6: (for s-a-0 faults in AND and OR
parts of an easily testable SOAE network)

Generate the following tests for each k (1 ≤ k ≤ r).

• x0 ← d, xrl+k ← 1 (0 ≤ l ≤ n/r − 1), the other
xi’s ← 0, tk ← 1, the other ti’s ← 0.

Every test in Test Set 6 assigns the value 1 to the
AND part and detects all the single s-a-0 faults in the
AND part as well as the third and fourth tests of Test
Set 3. Also, every test sensitizes all the input lines
of AND gates. For each k, the value 1 is assigned to
exactly one input line of each OR gate, and the s-a-0
fault on the line is detected. By applying the test for
all k, all the single s-a-0 faults in the OR part are also
detected.

Example 10: S-a-0 faults in the AND and OR parts
of the network given by Fig. 6 are detected by the
tests {(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, t1, t2, t3)} =
{(d, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0), (d, 0, 1, 0, 0, 1, 0, 0, 1, 0,
0, 1, 0), (d, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1)}. Each of (a), (b),
and (c) in Fig. 7 shows the lines to which the value 1 is
assigned by each test, i.e., each test detects s-a-0 faults
on these lines. ✷

To detect s-a-0 faults in the OR part, a straightfor-
ward SOAE network requires n tests of Test Set 5 while
an easily testable SOAE network requires only r tests
of Test Set 6 by using testing variables t1, t2, · · · , tr.

6.2 Tests for S-a-1 Faults in AND and OR Parts

The following tests detect s-a-1 faults in the AND and
OR parts.

Test Set 7: (for s-a-1 faults in the AND and OR
parts of an easily testable SOAE network)

Generate the following tests for each k
(0 ≤ k ≤ n/r − 1).
• x0 ← d, xrk+l ← 0 (1 ≤ l ≤ r), the other xi’s
← 1, all ti’s ← 0.

Except for assigning the value 0 to all ti’s, Test
Set 7 is equivalent to Test Set 4, which is the tests
for s-a-1 faults in the AND part of (0, 2r − 1)-RAE



1284
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.9 SEPTEMBER 1999

Fig. 7 Tests for s-a-0 faults in the AND and OR parts.

networks. Hence all the single s-a-1 faults in the AND
part are detected. Note that assigning the value 0 to
ti’s does not affect the outputs of OR gates since there
are no OR gates consisting of only testing variables. In
every AND gate, at most one input line specified by k
is sensitized. In the OR gates connected to such lines,
all input lines are assigned the value 0, and s-a-1 faults
on those lines are detected. By applying the test for
all k, all the single s-a-1 faults in the OR part are also
detected.

Example 11: S-a-1 faults in the AND and OR parts
of the network given by Fig. 6 are detected by the
tests {(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, t1, t2, t3)} =
{(d, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0), (d, 1, 1, 1, 0, 0, 0, 1, 1, 1,
0, 0, 0), (d, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)}. Each of (a), (b),
and (c) in Fig. 8 shows the lines to which the value 0 is
assigned by each test, i.e., each test detects s-a-1 faults
on these lines. ✷

Test Set 6 and 7 are independent of the functions
realized; they depend on the constant r.

6.3 Tests for Stuck-at Faults on the Primary Output
and the Constant Input Lines

Stuck-at faults on the PO and the CI lines are not de-
tected if the values assigned to these two lines are un-
changed throughout Test Set 6 and 7. To avoid this,
in Test Set 6, x0 ← 1 is assigned in arbitrary i tests
(1 ≤ i ≤ r−1) and x0 ← 0 is assigned in the rest of the
tests. These tests change the values assigned to the PO
and CI lines because every test in Test Set 6 assigns the
value 1 to all the input lines of the EXOR gate except
the CI line. Thus the above tests detect stuck-at faults
on the PO and CI lines. Even if the EXOR gate is
realized by the EXOR cascade [6](Fig. 9), the tests are

Fig. 8 Tests for s-a-1 faults in the AND and OR parts.

Fig. 9 EXOR cascade.

available, i.e., the tests detect stuck-at faults on the
PO and CI lines and the interconnect lines between the
2-input EXOR gates.

6.4 Number of the Tests

From r tests of Test Set 6 and n/r tests of Test Set 7,
we have the following.

Theorem 4: In the easily testable SOAE networks,
all the single stuck-at faults are detected by (r + n/r)
tests. ✷

The number of tests (r+n/r) is minimum when r =
√

n.
Thus the following corollary holds.

Corollary 2: If n = r2 holds, all the single stuck-at
faults in the easily testable SOAE networks are detected
by only 2

√
n tests. ✷

To detect all the single stuck-at faults, PPRM net-
works require (n + 4) tests while the easily testable
SOAE networks require smaller tests 2

√
n.

6.5 Tests for the Primary Input Lines

In Test Set 6 and 7, the primary input (PI) lines are
assumed to be fault-free. The case that the PI lines
could be faulty is discussed in this section.

Tests in Test Set 6 and 7 may not detect a stuck-
at fault on the PI lines because a faulty signal on the
PI lines usually fans out to some input lines of the
OR gates. A simple technique to detect such faults



HIRAYAMA et al: TESTABLE REALIZATION BASED ON OR-AND-EXOR EXPRESSIONS
1285

Fig. 10 Extra gates to detect faults on the PI lines (1).

is adding extra gates to the network [6], [11]. We show
two methods below.

6.5.1 Extra Gates for Efficient Testing

In this method, an AND gate such that x1x2 · · ·xn ·
t1t2 · · · tr and an OR gate such that x1 ∨x2 ∨ · · · ∨xn ∨
t1 ∨ t2 ∨ · · · ∨ tr are added (Fig. 10).

Then the following two tests are applied. Stuck-
at faults on the PI lines are detected by observing the
outputs z1 and z2.

Test Set 8:

• All xi’s and ti’s ← 0.
• All xi’s and ti’s ← 1.

This method has an advantage that the above tests also
detect multiple stuck-at faults on the PI lines, whereas
it has a disadvantage that these extra gates require
larger fan-in, namely, (n + r) inputs each. Although
it is possible to realize an (n + r)-input gate by con-
necting small gates in order to satisfy the fan-in limita-
tions, the following method requires smaller hardware
costs under the fan-in limitations.

6.5.2 Extra Gates under the Fan-in Limitations

In this method, an OR gate such that t1 ∨ t2 ∨ · · · ∨ tr
and an OR-AND subnetwork such that (x1 ∨ x2 ∨ · · · ∨
xr)(xr+1∨xr+2∨· · ·∨x2r) · · · (xn−r+1∨xn−r+2∨· · ·∨xn)
are added (Fig. 11).

In the method, stuck-at faults on the PI lines are
detected through z1 and z2 by Test Set 6 and 7, i.e., this
method requires no additional tests. Multiple stuck-at
faults can not be detected.

7. Conclusions and Comments

In this paper, we presented an expansion method to
obtain single-rail-input OR-AND-EXOR expressions

Fig. 11 Extra gates to detect faults on the PI lines (2).

(SOAEs). SOAEs are canonical for the given variable
partition of expansion. An SOAE network forms the
three-level OR-AND-EXOR network in which the fan-
in of every OR gate is limited to r and the fan-in of
every AND gate is limited to n/r, where r is a constant
such that 1 ≤ r ≤ n. Because of the single-rail input,
those networks can be implemented by MOS networks
easily. Although SOAE networks require more gates
than PPRM networks, the hardware cost of the two
kinds of networks could be equal in the MOS imple-
mentation. A straightforward SOAE network requires
(n + n/r + 4) tests to detect all the single stuck-at
faults; the network, however, can be easily testable.
We showed that an easily testable SOAE network re-
quires only (r+n/r) tests for the single stuck-at faults
by adding r extra variables. This realization can be
applied to an arbitrary function. The tests do not de-
pend on the functions realized but on the constant r.
If adding r extra primary inputs requires considerable
hardware costs, the scan path technique [1] can be used
instead.

If SOAE networks are implemented by ordinary
AND and OR gates, not MOS gates, the total number
of OR gates is reduced by sharing the OR gates that
realize the same sum terms [2]. In this case, By sharing
the odd number of OR gates only, the testability for
the single stuck-at faults is sustained because every OR
gate has the odd number of fan-outs.

If n = r2 holds, the most easily testable SOAE
networks are obtained. In these networks, all the sin-
gle stuck-at faults are detected by only 2

√
n tests. The

former easily testable realizations require O(n) or more
tests to detect the faults. Although our realization re-
quires

√
n extra variables in this case, these are far

fewer than the n main variables. The proposed real-
ization has significantly reduced the number of tests by
moderate additions of hardware.



1286
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.9 SEPTEMBER 1999

References

[1] M. Abramovici, M.A. Breuer, and A.D. Friedman, Digi-
tal Systems Testing and Testable Design, revised printing,
IEEE PRESS, New York, 1990.

[2] D. Debnath and T. Sasao, “Minimization of AND-OR-
EXOR three-level networks with AND gate sharing,” IEICE
Trans. Inf. & Syst., vol.E80-D, no.10, pp.1001–1008, Oct.
1997.

[3] T. Hirayama, G. Koda, Y. Nishitani, and K. Shimizu, “Eas-
ily testable realization based on OR-AND-EXOR expansion
with single rail inputs,” Proc. IEEE APCCAS’98, pp.371–
374, Nov. 1998.

[4] S. Muroga, VLSI System Design, John Wiley & Sons, Inc.,
1982.

[5] D.K. Pradhan, “Universal test sets for multiple fault detec-
tion in AND-EXOR arrays,” IEEE Trans. Comput., vol.C-
27, no.2. pp.181–187, Feb. 1978.

[6] S.M. Reddy, “Easily testable realization for logic func-
tions,” IEEE Trans. Comput., vol.C-21, no.11. pp.1183–
1188, Nov. 1972.

[7] K.K. Saluja and S.M. Reddy, “Fault detecting test sets
for Reed-Muller canonic networks,” IEEE Trans. Comput.,
vol.C-24, no.1. pp.995–998, Oct. 1975.

[8] A. Sarabi and M.A. Perkowski, “Fast exact and quasi-
minimal minimization of highly testable fixed-polarity
AND/XOR canonical networks,” Proc. 29th ACM/IEEE
DAC, pp.30–35, June 1992.

[9] T. Sasao, “Logic synthesis with EXOR gates,” in Logic Syn-
thesis and Optimization, ed. T. Sasao, pp.259–285, Kluwer
Academic Publishers, 1993.

[10] T. Sasao, “Optimization of pseudo-Kronecker expressions
using multiple-place decision diagrams,” IEICE Trans. Inf.
& Syst., vol.E76-A, no.3, pp.475–482, March 1994.

[11] T. Sasao, “Easily testable realizations for generalized Reed-
Muller expressions,” IEEE Trans. Comput., vol.46, no.6,
pp.709–716, June 1997.

[12] T. Yamada, “Easily testable AND-EOR combinational
logic circuits,” IECE Trans., vol.J66-D, no.1, pp.105–110,
Jan. 1983.

Takashi Hirayama received his BE,
ME, and PhD degrees in computer science
from Gunma University, Kiryu, Japan, in
1994, 1996, and 1999, respectively. He
is currently a research assistant in the
Department of Electrical and Electronics
Engineering, Ashikaga Institute of Tech-
nology, Ashikaga, Japan. His research in-
terests include high level and logic synthe-
sis and design for testability.

Goro Koda received his BE and
ME degrees in electronic engineering from
Gunma University, Kiryu, Japan, 1971
and 1973, respectively. In 1973 he joined
the NEC corporation. Since 1975 he has
been a research assistant in the Depart-
ment of Computer Science, Gunma Uni-
versity. His current research interests in-
clude CAD for logic networks.

Yasuaki Nishitani received his BE
degree in electrical engineering, his ME
and PhD degrees in computer science
from Tohoku University, Sendai, Japan,
in 1975, 1977, and 1984, respectively. In
1981 he joined the Software Product Engi-
neering Laboratory at the NEC corpora-
tion. Since 1987 he has been an associate
professor in the Department of Computer
Science, Gunma University. His current
research interests include the software en-

gineering and distributed algorithms.

Kensuke Shimizu received his BE,
ME, and PhD degrees in electronic en-
gineering from Tohoku University, Sen-
dai, Japan, in 1962, 1964, and 1967, re-
spectively. He was a lecturer from 1967
to 1968 and an associate professor from
1968 to 1976 in the Department of Elec-
tronic Engineering, Faculty of Engineer-
ing, Gunma University. Since 1976 he
has been a professor in the Department of
Computer Science, Faculty of Engineer-

ing, Gunma University, engaged in research and education in
logic circuits, switching theory, and expert systems.


