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Technical Note

Fixed-Polarity OR-AND-EXOR Expressions and Their Minimization

Takashi Hirayama,† Kazuyuki Nagasawa†

and Kensuke Shimizu††

We propose fixed-polarity OR-AND-EXOR expressions (FOAEs) and their minimization
algorithm with O(4n) time complexity, where n is the number of input variables. FOAEs can
be used for the easily testable realization for the deterministic and/or random testing. We
present experimental results of the number of terms of FOAEs and random testing for the
FOAE circuits on the MCNC benchmark. The results show that the FOAE circuits have high
potential testability for random testing.

1. Introduction

EXOR-based circuits have been studied be-
cause of the compactness 5) and the easy testa-
bility 3). For the deterministic testing, many
testable realizations with EXORs have been
proposed 2),3). Recently, efficient properties of
EXOR-based circuits for the random testing
have been reported 1). The easy testability mo-
tivates the study of EXOR-based logic synthe-
sis.
In this paper, fixed-polarity OR-AND-EXOR

expressions (FOAEs) and their minimization al-
gorithm are proposed. FOAEs are a generaliza-
tion of FPRMs 4),5) and SOAEs 3). Let n be the
number of input variables and r be a constant
such that 1 ≤ r ≤ n. An FOAE corresponds to
the three-level circuit such that the fan-ins of
OR and AND gates are limited to r and �n/r�,
respectively. The experimental results to com-
pare the size and the testability of FOAEs with
FPRMs and SOAEs are also given.

2. Basic Definitions and Properties

Let n be the number of input variables and
r be a constant such that 1 ≤ r ≤ n. OR-
AND-EXOR expressions (OAEs) in this paper
use OR terms with at most r literals. The con-
stant r is called the fan-in parameter. The gen-
eral form of an OR-AND term of OAEs is given
by the following notation.

Definition 1 The literals x̄ and x of a vari-
able x may be denoted by x{0} and x{1}, re-
spectively. The special literals x{} and x{0,1}
mean the constants 0 and 1, respectively. ✷

Example 1 The OR term x1 ∨ x̄2 ∨ x4 can
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be written as x
{1}
1 ∨ x

{0}
2 ∨ x

{}
3 ∨ x

{1}
4 . ✷

By using the notation of Definition 1, the
general form of an OR term with variables
{xj , xj+1, . . . , xk} (j ≤ k) is written as R(j, k)
= x

βj

j ∨x
βj+1
j+1 ∨· · ·∨xβk

k (βi ⊆ {0, 1}). By using
R(j, k), the general form of an OR-AND term
with variables {x1, x2, . . . , xn} is written as
A(1, n) = R(1, r)·R(r+1, 2r)· · ·R(n− r+1, n),
where r is the fan-in parameter. A concrete
OR-AND term A(1, n) is specified when the
{β1, β2, . . . , βn} is given. An EXOR combina-
tion of arbitrary OR-AND terms with fan-in
parameter r is called an OAE with fan-in pa-
rameter r. Hence an OAE corresponds to an
OR-AND-EXOR three-level circuit such that
the fan-ins of OR and AND gates are limited to
r and �n/r�, respectively. In some special cases,
OAE circuits may result in two-level; for exam-
ple AND-EXOR circuits are obtained if r = 1,
and OR-EXOR circuits are obtained if r = n.

Example 2 (x̄1∨x2)(x3∨x4)⊕x1(x3∨x4)⊕
x2x̄4 is an OAE with fan-in parameter r = 2.

Definition 2 Let G be an expression. The
set of all the positive and negative literals that
appear in G is denoted by l(G). G|ab is the
expression obtained by replacing all the literals
a’s in G with b’s. ✷

Example 3 If G = x̄1x2x3∨x1x̄2x3, l(G) =
{x̄1, x1, x̄2, x2, x3} and G|x3

x̄3
= x̄1x2x̄3∨x1x̄2x̄3.

Definition 3 V denotes an n-bit vector
[v1, v2, . . . , vn]. An OAE G is called a Fixed-
polarity OAE (FOAE) with polarity vector V

if x
{vi}
i �∈ l(G) for every i (1 ≤ i ≤ n). Each vi

(1 ≤ i ≤ n) in V is called the polarity of the
variable xi. τ (G) represents the number of OR-
AND terms connected by EXORs in an FOAE
G. ✷

Example 4 The OAE G = (x̄1 ∨ x2)(x3 ∨
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Fig. 1 Relation among classes.

x̄4) ⊕ (x̄1 ∨ x2)x̄4 is an FOAE whose polarity
vector is [1, 0, 0, 1]. τ (G) is 2. ✷

FOAEs are a generalization of single-rail-
input OR-AND-EXOR expressions (SOAEs) 3).
SOAEs correspond to FOAEs with polarity vec-
tor [0, 0, . . . , 0]. FOAEs are also a generaliza-
tion of fixed-polarity Reed-Muller expressions
(FPRMs) 4),5). FPRMs correspond to FOAEs
with fan-in parameter r = 1. The relation
among these expressions is shown below.

Property 1 PPRM, FPRM, SOAE ,
and FOAE represent the class of all PPRMs 5),
FPRMs, SOAEs, and FOAEs, respectively.
Then, PPRM ⊂ FPRM ⊂ FOAE and
PPRM ⊂ SOAE ⊂ FOAE hold (Fig. 1). ✷

Property 2 The FOAE of f is unique if the
polarity vector V and the fan-in parameter r is
specified. ✷

FOAEs can be applied to the design for testa-
bility (DFT). Since an FOAE consists of fixed
polarity of literals for each variable, the eas-
ily testable realization for SOAEs 3) can also be
used to FOAEs. In the realization, all the single
stuck-at faults in FOAE circuits are detected by
fewer deterministic tests than FPRM circuits.
For the random testing, the high testability of
FOAE circuits is proved experimentally in this
paper.

3. Minimization of OR-AND-EXOR
Expressions

In this section, we present an algorithm to
obtain minimum FOAEs.
We give a theorem which can be used to

complement the polarities of an FOAE without
changing the function.

Theorem 1 Let G be an arbitrary expres-
sion. Let ẋ be either the positive literal x or
the negative literal x̄ of a variable x of G and
¯̇x be the complement of ẋ. Then, the following
equation holds.

G = G|ẋ¯̇x ⊕G|ẋ0 ⊕G|ẋ1 (1)
Proof: Without loss of generality, ẋ and ¯̇x
are assumed to be the positive literal x and the

(1) Obtain SOAE 3) G of a given function f .
(2) Gmin ← G.
(3) Do the following for each V ∈ {0, 1}n in
the Gray code order.
(3-1) Obtain G′ by applying Eq. (1) to G ac-

cording to the polarity change.
(3-2) If τ (G′) < τ (Gmin) then Gmin ← G′.
(3-3) G← G′.

(4) Return Gmin.

Fig. 2 Minimization algorithm for FOAEs.

negative literal x̄, respectively.
( 1 ) In the case of x = 0:

G|xx̄ = G|x1 holds from x̄ = 1. Hence G|xx̄ ⊕
G|x0 ⊕ G|x1 = G|x1 ⊕ G|x0 ⊕ G|x1 = G|x0 holds.
Since x = 0, G = G|x0 holds. Then we have
G|xx̄ ⊕G|x0 ⊕G|x1 = G.

( 2 ) In the case of x = 1:
From x̄ = 0, G|xx̄ ⊕G|x0 ⊕G|x1 = G|x0 ⊕G|x0 ⊕
G|x1 = G|x1 = G is obtained in a similar way.

Thus Theorem 1 is proved. ✷

When G is an OR-AND term, G|ẋ¯̇x, G|ẋ0 , and
G|ẋ1 are also OR-AND terms.

Example 5 For the OR-AND term G =
(x1∨x2∨x3)(x4∨x5∨x6)(x7∨x8∨x9), comple-
menting the polarity of the variable x1 results
in G = G|x1

x̄1
⊕G|x1

0 ⊕G|x1
1 = (x̄1∨x2∨x3)(x4∨

x5∨x6)(x7∨x8∨x9)⊕(x2∨x3)(x4∨x5∨x6)(x7∨
x8 ∨ x9)⊕ (x4 ∨ x5 ∨ x6)(x7 ∨ x8 ∨ x9). ✷

Generally, by complementing the polarity of
a variable, a product term results in two prod-
uct terms like x̄ = x⊕1 while an OR-AND term
results in three OR-AND terms like Example 5.
Theorem 1 shows that a more complex expres-
sion also results in three expressions. So, some
of synthesis techniques for FOAEs may be ap-
plied to other EXOR-based synthesis.
As a minimization algorithm for FPRMs, the

Gray code method with O(4n) is known 6). We
present a similar minimization algorithm for
FOAEs in Fig. 2. The computation for an
FOAE of n = 4 with r = 2 is illustrated in
the diagram of Fig. 3. From Property 2, the
minimum FOAE with r is found by applying
all the polarity vectors. In the diagram, polar-
ity vectors are arranged in the Gray code order.
At each polarity vector, exactly one polarity is
changed from the previous vector. Therefore
at most 2n−1 OR-AND terms are expanded by
Eq. (1) at each phase.
We evaluate the time complexity of this al-

gorithm with the number of EXOR operations.
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Fig. 3 Minimization of an FOAE of n = 4 with fan-in parameter r = 2.

In Step (3-1) of Fig. 2, the number of EXOR
operations is at most 3 · 2n−1 because, in G,
there are at most 2n−1 OR-AND terms con-
cerned with Eq. (1) and each of them results in
at most three OR-AND terms. Since the step is
repeated 2n times in the Gray code order, the
total number of EXOR operations is at most
3 ·2n−1 ·2n = (3/2)4n. Thus the time complex-
ity of the algorithm is O(4n). This means that
the minimization of complex expressions such
as FOAEs is achieved in the same time com-
plexity of simpler expressions as FPRMs. This
algorithm can be extended to multiple-output
functions easily 6).

4. Experimental Results

We implemented the algorithm in Lisp on
SUN Ultra Sparc 60 Model 1450, and obtained
minimum FOAEs for the MCNC benchmark
set. In the following results, circuits with r = 1
means FPRMs and circuits with r = 2, 3, . . . , n
means FOAEs. Figure 4 shows the τ (G) of
minimum FOAEs of the benchmark functions
for each r = 1, 2, . . . , n. The smallest τ (G) and
its r for each benchmark function is presented
at ‘FO (r)’ in Table 1. In the table, the com-
putation time to obtain a minimum FOAE with
fan-in parameter r is shown in seconds. From
Fig. 4 and Table 1, FOAEs with some r consist
of less terms than FPRMs whereas there is not
much difference in the number of terms between
FOAEs and FPRMs.
On the other hand, FOAEs have much higher

random testability than FPRMs. To confirm
the random testability of FOAE circuits, we ap-
plied randomly-generated test patterns to the
FOAE circuits. Figure 5 shows the results of
the random testing for these circuits. The ver-
tical axis ‘Test length’ represents the number of
pseudo random patterns applied to the circuit.

For every circuit, the test patterns are applied
until the fault coverage for the internal single
stuck-at faults reaches 99.99%. Each test length
is the average of 1000 experiments with differ-
ent sequences of random patterns. These ex-
perimental results are plotted in approximation
curves in Fig. 5. Although there are some ex-
ceptions such as 9sym and rd73, FOAE circuits
(r ≥ 2) require much shorter test lengths than
FPRM circuits (r = 1). For large benchmarks
such as table3 and alu4, the test lengths of the
FOAE circuits can be 1/10 to 1/100 of that of
FPRM circuits. In Fig. 5, the test lengths are
especially short when r ≈ √n. This is mainly
due to the exclusion of OR and AND gates that
have large fan-ins; those gates tend to be the
bottleneck in random testing. In FOAE cir-
cuits with r ≈ √n, fan-ins of both OR and
AND gates result in relatively small (≈ √n).
Note that the fan-ins of OR and AND gates
are r and �n/r�, respectively. Since the circuits
in this experiment is the plain FOAE circuits
without any DFT techniques, the results rep-
resent the high potential testability of FOAE
circuits.
We also made experiments to compare

FOAEs with SOAEs, and it was found that the
test length is almost equal between them. On
the other hand, τ (G) of FOAEs can be smaller
than or equal to that of SOAEs. For a function
f , there exists only one SOAE if the fan-in pa-
rameter r is specified 3), whereas there exist 2n

forms of FOAEs corresponding to 2n polarity
vectors. Thus the minimum FOAE can be se-
lected from them. For the value of r such that
the test length is the shortest, the comparison
of τ (G) between SOAEs and FOAEs is shown
at ‘SO/FO (r)’ in Table 1. On the average,
FOAEs require 27% fewer terms than SOAEs.
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Fig. 4 Number of terms of FOAEs.
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Fig. 5 Test lengths for FOAEs.

Table 1 Number of terms of the benchmarks.

Name In/Out FP FO (r) SO/FO (r) Time
5xp1 7/10 61 61 (1,6,7) 93/66 (3) 1.93
9sym 9/1 173 171 (5) 212/171 (5) 3.66
alu4 14/8 3683 3627 (5) 5170/3627 (5) 2879

apex4 9/19 445 445 (1,8,9) 449/448 (3) 2.79
b12 15/9 66 66 (1,13–15) 120/88 (5) 983
clip 9/5 206 205 (9) 347/246 (3) 3.45
con1 7/2 17 16 (4) 26/17 (2) 60.3
ex5p 8/63 113 111 (4) 177/129 (3) 0.97

misex1 8/7 20 20 (1) 23/23 (3) 0.71
rd53 5/3 20 20 (1,3,5) 20/20 (3) 0.01
rd73 7/3 63 63 (1,5,7) 67/67 (4) 0.18
rd84 8/4 107 107 (1) 255/108 (4) 0.74
sao2 10/4 100 100 (1,9) 242/118 (5) 14.62
sqrt8 8/4 26 26 (1,7,8) 52/41 (3) 0.65
squar5 5/8 23 23 (1) 29/25 (3) 0.01
t481 16/1 13 10 (5) 41/13 (4) 306.7

table3 14/14 1945 1945 (1,7–10,
13,14)

4951/1984 (5) 3251

‘FP’=FPRM, ‘FO’=FOAE, ‘SO’=SOAE

5. Conclusions

We presented an efficient minimization algo-
rithm for FOAEs and obtained the minimum
FOAEs for the MCNC benchmark set. The
results show that FOAEs require fewer terms
than SOAEs and have higher potential testabil-
ity for random testing than FPRMs. The high-
est testability is obtained by setting the param-
eter at r ≈ √n while the value of r is decided
by a trade-off between the costs and the testa-
bility. The realization costs for fan-in could be

different between OR and AND gates.
Our minimization algorithm is based on the

Gray code method of FPRMs. As a minimiza-
tion of FPRMs, a faster algorithm called the
extended truth vector method 4) is also known.
The discussion whether the method is applica-
ble to FOAEs is a future work.

References

1) Drechsler, R., et al.: Testability of 2-Level
AND/EXOR Circuits, Proc. European Design
and Test Conference ’97, pp.548–553 (1997).

2) Fujiwara, H.: Logic Testing and Design for
Testability, MIT Press (1985).

3) Hirayama, T., et al.: Easily Testable Real-
ization Based on Single-Rail-Input OR-AND-
EXOR Expressions, IEICE Trans. Inf. & Syst.,
Vol.E82-D, No.9, pp.1278–1286 (1999).

4) Sasao, T. and Izuhara, F.: Exact Minimiza-
tion of FPRMs Using Multi-Terminal EXOR
TDDs, Sasao, T. and Fujita, M. (Eds.), Repre-
sentations of Discrete Functions, pp.191–210,
Kluwer Academic Publishers (1996).

5) Sasao, T.: Switching Theory For Logic Synthe-
sis, Kluwer Academic Publishers (1999).

6) Zhang, Y.Z. and Rayner, P.J.W.: Min-
imisation of Reed-Muller Polynomials with
Fixed Polarity, IEE Proc., Vol.131.Pt.E, No.5,
pp.177–186 (1984).

(Received September 14, 2000)
(Accepted February 1, 2001)


