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SUMMARY

Among all AND-EXOR expressions that represent a

logic function f , those with a minimum number of

products are called minimum AND-EXOR expressions

of f . The number of products in the minimum AND-

EXOR expressions of f is denoted by τ(f). The min-

imization algorithms of AND-EXOR expressions take

a time in O(22n

), where n is the number of variables.

So it is necessary to develop a simplification algo-

rithm that does not always find the exact minimum

AND-EXOR expressions but runs fast. This paper

presents a simplification algorithm of AND-EXOR ex-

pressions, which partially guarantees minimality and

has the following properties: (1) it computes a min-

imum AND-EXOR expression for a logic function f

with τ(f) < 3(k + 1), where k is a nonnegative inte-

ger, (2) if an AND-EXOR expression obtained by this

algorithm takes less than or equal to 3(k +1) of prod-

ucts, then it is minimum, and (3) its time complexity

is O(
√

3
kn2+(k+C)n

). From the experimental results

for k = 0, 1, 2, we can conclude that its computational

time is practical for n = 20, 7, 6, respectively. Modify-

ing this algorithm, we present an exact minimization

algorithm for 5-variable functions, which is faster than

previously known ones.

key words: logic design, AND-EXOR expressions,

logic minimization algorithms, time complexity

1 Introduction

A design of logic circuits usually uses algorithms to

simplify circuits in which AND, OR, and NOT gates

are used as basic logic components. However, for

arithmetic, telecommunication, and error correcting

circuits, their realizations in which EXOR gates are

used in addition to conventional AND and OR gates

often require fewer gates [1, 2, 7]. In automated design

of circuits with EXOR gates, it is necessary to estab-

lish the design methods for circuits containing EXOR

gates as well as AND and OR gates.

AND-EXOR expressions which are formed by com-

bining product terms with the EXOR operator are

called ESOPs (Exclusive-OR Sum-Of-Products ex-

pressions). There are many types of AND-EXOR

expressions, such as Reed-Muller expansions, general

Reed-Muller expansions, et al. ESOPs are most gen-

eralized expressions and require the smallest numbers

of product terms. Among all ESOPs that represent a

function f , those with a minimum number of product

terms are called minimum ESOPs of f and the num-

ber of product terms of the minimum ESOP of f is

denoted by τ(f). Minimization means to obtain the

minimum ESOP of f and simplification means reduc-

ing the number of product terms in ESOPs without

guaranteeing minimality.

There are no efficient algorithms for minimizing

ESOPs. The minimization algorithms previously

known use exhaustive searching methods [1, 5, 6, 10].

Since their computing time is O(22n

) or O(23n

), where
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n is the number of variables, it is difficult to com-

pute minimum ESOPs for n ≥ 6 in realistic time.

EXMIN [8] and EXMIN2 [9] are famous simplifica-

tion algorithms which rewrite ESOP by some rewrit-

ing rules and reduce the number of product terms

step-by-step. Since the rewriting rules are heuristic,

however, the minimality of the obtained ESOPs is not

guaranteed and there is no theoretical analysis of their

computing time.

We present a simplification algorithm based on

the minimization algorithm given by Nishitani and

Shimizu [5]. This simplification algorithm has the

following properties: (1) it always finds a minimum

ESOP for any function f with τ(f) < 3(k+1), where k

is a nonnegative integer; (2) if the obtained ESOP has

at most 3(k + 1) product terms, then it is minimum;

and (3) the time complexity is O(
√

3
kn2+(k+C)n

). No

simplification algorithms such that the class of func-

tions which can be minimized is explicitly specified

and the time complexity is given have been known pre-

viously. When the value of k is large in our simplifica-

tion algorithm, its computing time is large, while the

class of functions which can be minimized is large. It

is trade-off between the subclass of functions for which

it guarantees minimality and its computing time.

We also present a fast minimization algorithm for

5-variable functions, based on foregoing simplification

algorithm. This algorithm runs much faster than pre-

viously developed ones. It is useful for simplifying

functions with more than 5 variables to obtain mini-

mum ESOPs of 5-variable functions rapidly [4].

We implemented the simplification algorithm pre-

sented herein and made experiments on the functions

the simplified ESOPs whose minimality is not guar-

anteed. The experimental results give the average

difference between the number of product terms in

simplified ESOPs and that in minimum ESOPs and

the number of variables of functions which can be

simplified in practical time. For the functions with

τ(f) ≥ 3(k + 1), the the number of product terms of

the ESOP simplified by our algorithm becomes larger

than that of the minimum ESOP as τ(f) increases.

For k = 0, 1, 2, the computational time is practical for

n = 20, 7, 6, respectively.

2 Definitions and Minimization

Theorem

In this section, we give the definitions and the mini-

mization theorem [5] which characterizes the number

of product terms in minimum ESOPs.

Definition 1: x and x̄ are literals of a variable x.

A logical product which contains at most one literal

for each variable is called a product term. Product

terms combined with exclusive-or operators (⊕) form

an exclusive-or sum-of-products expression (ESOP).

Definition 2: The number of product terms in an

ESOP F is denoted by τ(F ). Among all ESOPs of a

function f , those with a minimum number of product

terms are called minimum ESOPs of f . The number

of product terms in a minimum ESOP of f is denoted

by τ(f).

Definition 3: For an n-variable function f and a

variable x, the subfunctions of f with x = 0 and x = 1

are denoted by fx=0 and fx=1, respectively. Further-

more fx=2 and fx=3 are defined to be fx=0⊕fx=1 and

the logical zero function 0, respectively.

A function f can be expanded as the following

four forms using the subfunctions fx=0, fx=1, fx=2,

and fx=3 (= 0): f = x̄fx=0 ⊕ xfx=1 ⊕ fx=3 =

x̄fx=3 ⊕ xfx=2 ⊕ fx=0 = x̄fx=2 ⊕ xfx=3 ⊕ fx=1 =

x̄fx=1 ⊕ xfx=0 ⊕ fx=2. Other expansion forms can be

constructed by combining an arbitrary (n−1)-variable

function g with each subfunction of the forgoing ex-

pansions. For example, x̄(fx=0 ⊕ g) ⊕ x(fx=1 ⊕ g) ⊕
(fx=3 ⊕ g) is an expansion of f .

The following is known as the minimization theo-

rem which characterizes τ(f) in terms of the subfunc-

tions [5].

Theorem 1 (Minimization Theorem): Let f be

an n-variable function and Fn−1 be the class of all

(n − 1)-variable functions. Then the following equal-

ity holds.

τ(f) = min
g∈Fn−1

{τ(fx=0 ⊕ g) + τ(fx=1 ⊕ g) + τ(g)}

From this minimization theorem and the fact that a

function f is expanded as x̄(fx=0⊕g)⊕x(fx=1⊕g)⊕g,

we can obtain the minimum ESOP of f by computing

the minimum ESOPs of fx=0 ⊕ g, fx=1 ⊕ g, and g for

all (n − 1)-variable functions g. That is, for g such
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that τ(fx=0 ⊕ g) + τ(fx=1 ⊕ g) + τ(g) is minimum,

letting F0, F1, and F3 be minimum ESOPs of fx=0⊕g,

fx=1 ⊕ g, and g, respectively, the minimum ESOP of

f is expressed as x̄F0 ⊕ xF1 ⊕ F3.

In another aspect, the above minimization theorem

allows us to obtain the minimum ESOP of f by com-

puting the minimum ESOPs of g0, g1, and g2 for all

expansions such that f = x̄g0 ⊕ xg1 ⊕ g2. Hence, by

computing minimum ESOPs for not only fx=0 ⊕ g,

fx=1 ⊕ g, and fx=3 ⊕ g = g but also fx=2 ⊕ g, we

can check four expansions x̄(fx=0⊕ g)⊕x(fx=1⊕ g)⊕
(fx=3 ⊕ g), x̄(fx=3 ⊕ g) ⊕ x(fx=2 ⊕ g) ⊕ (fx=0 ⊕ g),

x̄(fx=2 ⊕ g)⊕ x(fx=3 ⊕ g)⊕ (fx=1 ⊕ g), and x̄(fx=1 ⊕
g) ⊕ x(fx=0 ⊕ g) ⊕ (fx=2 ⊕ g). Then, by finding a

function g and an index i (0 ≤ i ≤ 3) such that
∑

0≤j≤3,j 6=i

τ(fx=j ⊕ g) is minimum, we can obtain the

minimum ESOP of f . From this discussion, the min-

imization theorem can be modified as follows.

Corollary 1: Let f be an n-variable function and

Fn−1 be the class of all (n − 1)-variable functions.

Then the following equality holds.

τ(f) = min
g∈Fn−1

{ min
0≤i≤3

{
∑

0≤j≤3,j 6=i

τ(fx=j ⊕ g)}}

A minimization algorithm based on Corollary 1 is

less efficient than one based on Theorem 1 because it

minimizes four (n − 1)-variable functions for each g.

However, a simplification algorithm given in the next

section is based on an equality similar to Corollary 1.

3 Simplification Algorithm

In this section, we present a simplification algorithm

based on the minimization algorithm and give the sub-

class of functions for which the algorithm guarantees

minimality. We also discuss its time complexity.

3.1 General simplification algorithm

Firstly we describe the concept of our simplification

algorithms. Algorithms based on Theorem 1 or Corol-

lary 1 must compute minimum ESOPs for all (n− 1)-

variable functions. Their computing time depends on

the number of testing functions g’s (|Fn−1| = 22n−1

).

Therefore, in order to develop more efficient algo-

rithms, the number of testing functions must be re-

duced. We consider an algorithm whose testing func-

tion set is smaller, some subset G[f ] of Fn−1, instead

of Fn−1. In general this algorithm is a simplification

algorithm, i.e., it does not always guarantee minimal-

ity since G[f ] ⊆ Fn−1. The set G[f ] is called a testing

set. The testing set G[f ] takes a parameter f because

it may vary by f .

Based on the concept described here, the func-

tion σ(f) is defined as follows, where n is the num-

ber of variables of f , and G[f ] is a testing set of

(n − 1)-variable functions corresponding to f . Mini-

mum ESOPs of all functions with at most m variables

(the number of product terms, τ(f)) are assumed to

be known.

σ(f) =







τ(f) (n ≤ m)

min
g∈G[f ]

{ min
0≤i≤3

{
∑

0≤j≤3,j 6=i

σ(fx=j ⊕ g)}} (n > m)

From the definition of σ(f), we can construct an

algorithm in a similar way as with the minimization

theorem. It is a simplification algorithm since the test-

ing set G[f ] is not Fn−1. Note that the value of σ(f) is

the number of product terms in the simplified ESOP.

In the following, we show the simplification algo-

rithm based on the equation of σ(f), where f is an

n-variable function. We have various algorithms by

changing G[f ] in this algorithm. To specify the test-

ing set G, our simplification algorithm is denoted by

A[G].

Algorithm 1 (A[G]):

1. For n ≤ m, return the minimum ESOP of f .

2. Find a function g ∈ G[f ] and an index i (0 ≤ i ≤
3) such that

∑

0≤j≤3,j 6=i

σ(fx=j ⊕ g) is minimum,

where σ(fx=0 ⊕ g), σ(fx=2 ⊕ g), σ(fx=2 ⊕ g), and

σ(fx=3 ⊕ g) are obtained by applying this algo-

rithm recursively.

3. For the function g obtained at the above step,

let F0, F1, F2, and F3 be the ESOPs which are

simplified for fx=0 ⊕ g, fx=2 ⊕ g, fx=2 ⊕ g, and

fx=3 ⊕ g by this algorithm, respectively. Return

the following ESOP F , corresponding to the in-

dex i obtained at Step 2.

F =















x̄F2 ⊕ xF3 ⊕ F1 (i = 0)

x̄F3 ⊕ xF2 ⊕ F0 (i = 1)

x̄F0 ⊕ xF1 ⊕ F3 (i = 2)

x̄F1 ⊕ xF0 ⊕ F2 (i = 3)
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3.2 Simplification algorithm such that

testing set is the class of functions

with τ(f) ≤ k

Specifying a concrete testing set of the general simpli-

fication algorithm of the previous section, we give a

simplification algorithm which guarantees minimality

for some subclass.

By T n
k we denote the class of n-variable functions

such that the number of product terms of their min-

imum ESOP is less than or equal to k. Consider the

algorithm A[Tk] which is given by using T n−1
k as the

testing set G[f ] in Algorithm 1. The number of prod-

uct terms of an ESOP simplified by A[Tk], denoted

by σk(f), is defined as follows, where Sk(f, g, i) =
∑

0≤j≤3,j 6=i

σk(fx=j ⊕ g).

σk(f) =







τ(f) (n ≤ m)

min
g∈T n−1

k

{ min
0≤i≤3

{Sk(f, g, i)}} (n > m)

Then the following theorem and corollary hold.

Theorem 2: Let k be a nonnegative integer. For an

arbitrary function f with τ(f) < 3(k + 1), σk(f) =

τ(f).

Proof: It is proved by induction on n. In the base

case of n ≤ m, it is trivial that the assertion holds

from the definition of σk. Assume that the assertion

holds for n−1. Let f be an n-variable function. From

Theorem 1, there exists an (n− 1)-variable function g

such that

τ(f) = τ(fx=0 ⊕ g) + τ(fx=1 ⊕ g) + τ(g).

From the condition τ(f) < 3(k + 1), all of

τ(fx=0 ⊕ g), τ(fx=1 ⊕ g), and τ(g) are less than

3(k + 1). Hence, from the induction hypothe-

sis, σk(fx=0 ⊕ g) = τ(fx=0 ⊕ g), σk(fx=1 ⊕ g) =

τ(fx=1 ⊕ g), and σk(g) = τ(g) hold, and then we have

the following equality.

Sk(f, g, 2) = σk(fx=0 ⊕ g)+σk(fx=0 ⊕ g)+σk(g) = τ(f)

(1)

Furthermore from the condition τ(f) < 3(k + 1), at

least one of τ(fx=0 ⊕ g), τ(fx=1 ⊕ g), and τ(g) is at

most k, i.e., fx=0 ⊕ g ∈ T n−1
k or fx=1 ⊕ g ∈ T n−1

k or

g ∈ T n−1
k .

In the case of g ∈ T n−1
k , since σk(f) ≤ Sk(f, g, i)

for any i (0 ≤ i ≤ 3), we have σk(f) ≤ τ(f) from

the Eq. (1). In the case of fx=0 ⊕ g ∈ T n−1
k , since

σk(f) ≤ Sk(f, (fx=0 ⊕ g), i) for any i (0 ≤ i ≤ 3) and

the equations fx=0 ⊕ g = fx=3 ⊕ (fx=0 ⊕ g), fx=1 ⊕
g = fx=2 ⊕ (fx=0 ⊕ g), and g = fx=0 ⊕ (fx=0 ⊕ g)

hold, we have Sk(f, g, 2) = Sk(f, (fx=0⊕g), 1). Hence

σk(f) ≤ τ(f). In the case of fx=0 ⊕ g ∈ T n−1
k , we

have σk(f) ≤ Sk(f, (fx=1 ⊕ g), 0) ≤ τ(f) in a similar

way. From the proceeding discussion, we can conclude

that σk(f) ≤ τ(f) in all cases.

On the other hand, it is trivial that τ(f) ≤ σk(f).

Hence the assertion σk(f) = τ(f) is proved. 2

Corollary 2: Let k be a nonnegative integer. Then,

σk(f) = τ(f) if σk(f) ≤ 3(k + 1).

Proof: Since τ(f) ≤ σk(f), we have τ(f) ≤ 3(k +

1). When τ(f) < 3(k + 1), σk(f) = τ(f) holds from

Lemma 2. In the case of τ(f) = 3(k + 1), since 3(k +

1) = τ(f) ≤ σk(f) ≤ 3(k + 1), we have σk(f) = τ(f).

2

Theorem 2 guarantees that the simplification algo-

rithm A[Tk] always finds the minimum ESOP for an

arbitrary function f with τ(f) < 3(k + 1), and Corol-

lary 2 means that if the number of product terms in

an ESOP simplified by A[Tk] is at most 3(k +1), then

it is a minimum ESOP.

To implement the algorithm A[Tk], the testing set

T n−1
k must be generated. While it is easy to generate

T n−1
0 and T n−1

1 , it is hard to generate exact T n−1
k for

k ≥ 2. However, we can generate redundant T n−1
k by

combining at most k product terms with EXOR opera-

tors, where some functions may be generated multiple

times.

3.3 Computing time of A[Tk] and its

improvement

In this section we give the time complexity of the algo-

rithm A[Tk], and then improve it in terms of average

computing time.

Theorem 3: Let n be the number of variables.

The time complexity of the algorithm A[Tk] is

O(
√

3
kn2+(k+C)n

), where C is a constant.

Proof: In Step 2 in A[Tk], there are four re-

cursive calls for each (n − 1)-variable function g in

T n−1
k . Denoting by Tk(n) the computing time for an

n-variable function, we have the recurrence relation

Tk(n) ≤ 4C′ ·|T n−1
k |·Tk(n−1), where C′ is a constant.
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The number of all product terms with at most n − 1

variables is equal to 3n−1. Hence we have |T n−1
k | ≤

(3n−1 + 1)k. Since (3n−1 + 1)k ≤ 3kn, we have the

recurrence relation Tk(n) ≤ 3kn+log
3
4C′ · Tk(n − 1)

from the above relation. Let C = 2 log3 4C′ and

Tk(n) = c
√

3
kn2+(k+C)n

, where c is a constant, then

Tk(n) satisfies the above relation. 2

Although the algorithm A[Tk] computes Sk(f, g, i)

(0 ≤ i ≤ 3) for all g in T n−1
k , the minimum ESOP

(g and i such that Sk(f, g, i) is minimum) may be

obtained before testing all functions in T n−1
k . If we

have a method for verifying whether an intermediate

ESOP is minimum, then the average computing time

can be reduced by terminating when the minimum

ESOP is obtained.

The method for guaranteeing minimality of the in-

termediate ESOPs is based on Corollary 2. For a non-

negative integer k′ with k′ ≤ k, if the ESOP simplified

by the algorithm A[Tk′ ] has at most 3(k′ + 1) product

terms, then Corollary 2 guarantees that it is mini-

mum. It is unnecessary to apply the algorithm A[Tk].

Specifically, Step 2 of A[Tk] is divided in k + 1 sub-

steps by partitioning the testing set T n−1
k into T n−1

0 ,

(T n−1
1 − T n−1

0 ), · · ·, (T n−1
k − T n−1

k−1 ), and at the ith

substep we check the inequality τ(F ) ≤ 3(i+1), where

F is an intermediate ESOP. If the inequality holds, we

can conclude that F is minimum by Corollary 2 and

return it. We present the modified algorithm B[k],

based on the above argument, in the following. The

algorithm B[k] has the same properties as A[Tk], i.e.,

B[k] always obtains the minimum ESOP for any func-

tion f with τ(f) < 3(k+1) and if the number of prod-

uct terms in the obtained ESOP is at most 3(k + 1),

then it is minimum.

Algorithm 2 (B[k]):

1. Let Fmin be an ESOP which represents f (for

example, the minterm expansion of f).

2. For each k′ (k′ = 0, 1, · · · , k), perform the follow-

ing.

2.1 Let F be the ESOP which is obtained by

the algorithm A[Tk′ −Tk′−1], where T n−1
0 −

T n−1
−1 = T n−1

0 and recursive simplifications

in A[Tk′ −Tk′−1] are done by applying B[k].

If τ(F ) < τ(Fmin), assign the ESOP F to

Fmin.

2.2 If τ(Fmin) ≤ 3(k′+1), then return Fmin and

stop.

3. Return Fmin and stop.

4 Fast Minimization Algorithm

for 5-variable Functions

Slightly modifying algorithm B[2], we give a fast al-

gorithm which finds exact minimum ESOPs for all

5-variable functions. It is known that an arbitrary

5-variable function can be represented by an ESOP

with at most nine product terms [2]. Theorem 2 and

Corollary 2 guarantee that B[2] exactly minimizes all

functions whose minimum number of product terms

is at most eight, and that the obtained ESOPs with

nine product terms are minimum. There are 7824

functions whose minimum number of product terms

is nine [3, 4]. We applied algorithm B[2] to these 7824

functions. For 7776 functions of them, B[2] found

ESOPs with 9 product terms, i.e., they were mini-

mized, and there are only 48 functions which cannot

be minimized. For these 48 functions, we can make

a table of their minimum ESOPs, which are com-

puted by a minimization algorithm based on Theo-

rem 1. This table is called the auxiliary-table. Using

this table and the algorithm B[2], we can minimize all

5-variable functions: (1) simplify a 5-variable function

using B[2]; (2) if the number of product terms of the

simplified ESOP is less than or equal to nine, return

it; (3) otherwise, get the minimum ESOP from the

auxiliary-table and return it.

This modified algorithm was implemented in C lan-

guage and applied to 5-variable functions on Sparc

Station 10. In this implementation the terminating

condition of the recursive call is n ≤ 4 (m = 4), be-

cause the minimum ESOPs for all 4-variable functions,

the number of which is 65536, can be stored in a com-

puter memory. The average computing time is 0.01

seconds, and in the worst case, i.e., when the algo-

rithm tests all functions of T 4
2 (|T 4

2 | = 2370), the com-

puting time is 0.027 seconds. Previously, the method

of Koda and Sasao [4] was known as the fastest min-

imizer for 5-variable functions; its computing time is

0.09 seconds in the average case and seven seconds

in the worst case (HP9000/720). Compared to their

method, our minimization algorithm can be said to

run faster in both the average case and the worst case.
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Table 1: Ratio (%) of the number of minimized 5-

variable functions

τ(f) No. of represen-
tative functions

A[T0] A[T1] A[T2]

0 1 100 100 100

1 1 100 100 100

2 4 100 100 100

3 19 94.7 100 100

4 137 72.3 100 100

5 971 43.5 100 100

6 3572 36.7 93.6 100

7 2143 44.0 95.3 100

8 86 32.6 86.0 100

9 2(7824) 0 99.4 99.4

total 6936 40.7 95.1 99.9

5 Experimental Results

The algorithms A[Tk] and B[k] described in Section 3

were implemented and applied to some functions in

order to obtain their computing time and the differ-

ence between minimum ESOPs and the results of our

algorithms. In our implementation, the terminating

condition of the recursive call is n ≤ 4 (m = 4). The

programs are coded in CLISP and run on Sparc Sta-

tion 10.

As described in Section 3, algorithms A[Tk] and

B[k] find the minimum ESOPs for all functions f with

τ(f) < 3(k + 1). For functions with τ(f) ≥ 3(k + 1),

it is interesting to compare the numbers of product

terms in ESOPs simplified by A[Tk] with those in

minimum ESOPs. Although the minimum ESOPs of

6-variable functions cannot be computed in practical

time, those of 5-variable functions can be computed by

a minimization algorithm based on Theorem 1. Thus,

for 5-variable functions, we compare their ESOP sim-

plified by A[Tk] (k = 0, 1, 2) with their minimum

ESOPs. We applied our algorithms to all represen-

tative functions of LP-equivalence classes [1, 2], the

number of which is 6936, and all functions with τ(f) =

9, the number of which is 7824. Table 1 shows the ra-

tio of the number of functions which were minimized

by our simplification algorithm. Figure 1 shows the

error of solutions of our algorithms, where the error

is defined to be
∑

f (σk(f)− τ(f))/(the number of f),

which is the average of differences between the num-

bers of product terms of the simplified ESOPs and the

minimum ones.

A[T0]
A[T1]
A[T2]

τ( f )

A
�
�
��
�
�
�
�

σ k
(f

)
τ (

f)

1 2 3 4 5 6 7 80
� ��

	
�

�
�

9

���

���

Figure 1: Average difference of the number of prod-

ucts between simplified and minimized ESOPs

The algorithm A[Tk] finds minimum ESOPs for

more than 90 percent of functions with τ(f) = 3(k+1).

However, for functions whose minimum number of

product terms is large, the ratio of the number of

functions which can be minimized decreases and the

error increases. This is because for the expansions

f = x̄g0 ⊕ xg1 ⊕ g2 corresponding to the minimum

ESOP of f , all functions g0, g1, and g2 require more

than k product terms, when τ(f) is large.

Table 2 shows the average computing time of al-

gorithm B[k] for n-variable functions (n ≥ 5). The

functions are generated randomly and the number of

them varies as n, 10–10,000. From Table 2, we can

say that B[0] can simplify the functions with at most

20 variables and B[1] and B[k] can do those with at

most 7 and 6 variables, respectively.

To improve the error of solutions of our algorithm

for functions with τ(f) ≥ 3(k + 1), we increase the

number of expansions that are tested in our algorithm.

Here, we used the following methods for experiment.

• Extend the testing set T n−1
k to Sn−1

k [f ] = {g ⊕
h | g ∈ T n−1

k , h ∈ {0, fx=0 · fx=0}}, where “·”
operator denotes logical product.

• Execute A[G] for each variable x1, x2, · · · , xn.
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Table 2: Average time of B[k] (seconds)

n B[0] B[1] B[2]

5 0.0003 0.01 0.05

6 0.0010 6.73 4159.68

7 0.0029 14791.92

8 0.0090

9 0.027

10 0.082

11 0.36

12 0.94

13 2.74

14 8.10

15 24.51

16 72.07

17 216.37

18 645.23

19 1976.67

20 6014.47

The former increases the number of testing expan-

sions by extending the testing set and the latter in-

creases the number of testing expansions by permuting

variables. The latter derives a different algorithm from

the general simplification algorithm in Section 3.1. By

P [G] we denote this new algorithm with testing set

G[f ]. We made similar experiments on A[T0], A[S0],

P [T0], and P [S0] as on A[Tk]. The experimental re-

sults are shown in Table 3 and Figure 2. While A[T0]

minimizes 41 percent of 5-variable functions, A[S0],

P [T0], and P [S0] minimize 52 percent, 69 percent, and

75 percent of them, respectively (Table 3). The dif-

ference between the numbers of product terms in the

simplified ESOPs and the minimum ones decreases by

the order of A[T0], A[S0], P [T0], and P [S0] (Figure 2).

By adding fx=0 · fx=1 to the testing set and simplify-

ing for all variable permutations we can decrease the

errors of solutions of our simplification algorithm.

6 Conclusions

We presented the simplification algorithms of ESOPs,

A[Tk] and B[k]. A[Tk] and B[k] guarantee that they

always find the minimum ESOPs for all functions f

with τ(f) < 3(k + 1) and that the simplified ESOP

is minimum if it has at most 3(k + 1) product terms.

Their time complexity is O(
√

3
kn2+(k+C)n

). When k

Table 3: Ratio (%) of the number of minimized 5-

variable functions (2)

τ(f) No. of represen-
tative functions

A[T0] A[S0] P [T0] P [S0]

0 1 100 100 100 100

1 1 100 100 100 100

2 4 100 100 100 100

3 19 94.7 100 94.7 100

4 137 72.3 83.9 93.4 95.6

5 971 43.5 56.3 77.2 84.6

6 3572 36.7 49.5 68.5 73.8

7 2143 44.0 53.0 65.3 72.3

8 86 32.6 51.2 50.0 67.4

9 2(7824) 0 0 0 0

total 6936 40.7 52.4 69.1 75.3

is large, the computing time is large, but the class of

functions which can be minimized is large. We also

presented the fast algorithm to minimize 5-variable

functions on an average computing time 0.01 seconds,

which uses B[k] and runs much faster than previously

known algorithms.

We implemented the presented algorithms in LISP

and engaged in experimental studies on their comput-

ing time and the errors of their solutions. For k = 0,

k = 1, and k = 2, we can simplify functions with

20, 7, and 6 variables, in practical time, respectively.

The error of their solutions increases as τ(f) increases.

Then, we experimentally show that adding fx=0 ·fx=1

to the testing set and simplifying for all variable per-

mutations improves the solutions.

Our simplification algorithms for n-variable func-

tions simplify (n − 1)-variable functions recursively.

If we store the intermediate ESOPs that are obtained

by recursive simplification, the computing time can be

reduced since each function is simplified only once.

Since the cost of an EXOR gate and an OR gate is

the same in FPGAs, it is useful to use EXOR gates in

the design of FPGAs. We can easily construct the al-

gorithms which reduce the number of literals by com-

puting the number of literals adding to the number

of product terms in our algorithms. These algorithms

may be useful for the design of FPGAs. Extending our

simplification algorithm to multiple-output functions

remains to be studied.
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Figure 2: Average difference of the number of prod-

ucts between simplified and minimized ESOPs (2)
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