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SUMMARY It has been considered difficult to obtain the
minimum AND-EXOR expression of a given function with six
variables in a practical computing time. In this paper, a faster
algorithm of minimizing AND-EXOR expressions is proposed.
We believe that our algorithm can compute the minimum AND-
EXOR expressions of any six-variable and some seven-variable
functions practically. In this paper, we first present a naive algo-
rithm that searches the space of expansions of a given n-variable
function f for a minimum expression of f . The space of expan-
sions are generated by using all combinations of (n − 1)-variable
product terms. Then, how to prune the branches in the search
process and how to restrict the search space to obtain the mini-
mum solutions are discussed as the key point of reduction of the
computing time. Finally a faster algorithm is constructed by us-
ing the methods discussed. Experimental results to demonstrate
the effectiveness of these methods are also presented.
key words: AND-EXOR two-level circuit, AND-EXOR expres-
sion, exclusive-or sum-of-products expression, logic minimiza-
tion algorithm

1. Introduction

Logic circuits including exclusive-or (EXOR) gates have
some advantages over traditional circuits with only
AND and OR gates. EXOR-based realization can im-
prove the testability [8], [16], [21] and often reduces the
circuit area [2], [4], [13]. For arithmetic functions, error-
correcting functions, and tele-communication func-
tions, AND-EXOR circuits are smaller than AND-OR
ones [17].

AND-EXOR logical expressions, which correspond
to AND-EXOR circuits, have been studied as the fun-
damentals of the EXOR-based realization. There are
several classes of AND-EXOR expressions [9], [20] such
as PPRMs (positive-polarity Reed-Muller expressions),
FPRMs (fixed-polarity Reed-Muller expressions), DF-
PRMs (double-fixed-polarity Reed-Muller expressions),
and ESOPs (exclusive-or sum-of-products expressions).
ESOPs are expressions such that arbitrary product
terms are combined by EXORs. Among the classes of
AND-EXOR expressions, ESOPs are the most general
AND-EXOR expressions and require the fewest prod-
uct terms to represent logic functions. The number
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of product terms of an ESOP F is called the size of
F . Among all ESOPs that represent a logic function
f , those with the minimum size are called minimum
ESOPs of f . The size of a minimum ESOP of f is
denoted by τ (f). Minimization means to obtain the
minimum ESOP of f and simplification means to re-
duce the number of product terms in ESOPs without
guaranteeing minimality.

A lot of algorithms of simplifying ESOPs by apply-
ing heuristic rewriting rules have been proposed [1], [5],
[6], [24]; Sasao’s algorithm [18] and Song-Perkowski’s al-
gorithm [23] are known to be especially efficient. How-
ever, these algorithms do not guarantee the minimality
of the resulting ESOPs. On the other hand, studies
about algorithms of minimizing ESOPs are fewer [14],
[15], [19]; so far, no efficient minimization algorithms
for ESOPs are known. Although a simple algorithm
based on the minimization theorem [7] computes a min-
imum ESOP of a given function f with n variables by
testing all (n − 1)-variable functions, the algorithm re-
quires a huge computing time if n � 6. It is due to
the number of (n − 1)-variable functions, 22n−1

, which
is double exponential. In practice, minimization algo-
rithms proposed previously can be applied only to five-
variable functions and a small fraction of the functions
with more variables. It has been considered difficult to
obtain the minimum ESOPs for functions with six or
more variables.

In general, minimization is much more time con-
suming than simplification. The minimization results,
however, can be used to evaluate the performance of
the simplification algorithms. Even for a larger func-
tion that cannot be minimized, it is important to obtain
the minimum expressions of their subfunctions since an
arbitrary function can be represented by a combination
of its subfunctions. These expressions can be used to
efficient initial forms in the simplification algorithms.

In this paper, a faster minimization algorithm is
proposed. We believe that the algorithm can com-
pute the minimum ESOPs of any six-variable and some
seven-variable functions in a practical computing time.
To describe the basic concept of minimization, we re-
fer to the original minimization algorithm based on
the minimization theorem and give an simplification
algorithm named naive-tau[k](f) in Sect. 2. While
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the original minimization algorithm tests all (n − 1)-
variable functions g, naive-tau[k](f) tests g such that
τ (g) � k only, where k is a nonnegative integer. For
a given function f , the size of the ESOP obtained by
naive-tau[k](f) is denoted by τ [k](f). Naive-tau[k](f)
searches ESOPs of f with generating candidate func-
tions g dynamically by combining at most k products.
So, naive-tau[k](f) can be viewed as a program search-
ing for a solution. Section 3 describes a faster ver-
sion of naive-tau[k](f), called fast-tau[k](f), which
can prune the branches in the search process. This
pruning method does not affect the size of the result-
ing ESOPs, that is, the size of the ESOP obtained by
fast-tau[k](f) is also τ [k](f). Since the search space of
fast-tau[k](f) expands with k, a minimum ESOP of f
is obtained if k is large enough. To avoid unnecessary
search, the upper bound on k such that τ [k](f) = τ (f)
are discussed in Sect. 4. By using the upper bound,
a minimization algorithm min-tau(f) is obtained from
fast-tau[k](f). Experimental results about the effec-
tiveness of the pruning method and the upper bound
on k are given in Sect. 5.

2. Preliminaries

In this section, we describe the basic concept of mini-
mization.

Definition 1: The size of an ESOP F is the number
of product terms of F , denoted by τ (F ). Among all
ESOPs that represent a logic function f , those with
the minimum size are called minimum ESOPs of f . The
size of a minimum ESOP of f is denoted by τ (f). ✷

Definition 2: For an n-variable function f and a vari-
able x, the subfunctions of f with x = 0 and x = 1 are
denoted by fx:{0} and fx:{1}, respectively. Furthermore
fx:{0,1} and fx:{} are defined as fx:{0} ⊕ fx:{1} and the
logical zero function 0, respectively. In general, fx:(I⊕J)

(I, J � {0, 1}, I ⊕ J = (I ∪ J) − (I ∩ J)) is defined as
fx:I ⊕ fx:J . ✷

With the above subfunctions, an arbitrary function
f can be expanded as follows [20], where I � {0, 1}.

f = xfx:(I⊕{0}) ⊕ x̄fx:(I⊕{1}) ⊕ fx:(I⊕{0,1}) (1)

The expansion with I = {0, 1} is known as the Shannon
expansion, and the expansions with I = {1} and I =
{0} are known as the positive Davio and the negative
Davio expansions, respectively. With an arbitrary (n−
1)-variable function g, a more general expansion holds:

f = x(fx:(I⊕{0}) ⊕ g)⊕ x̄(fx:(I⊕{1}) ⊕ g)
⊕(fx:(I⊕{0,1}) ⊕ g), (2)

since (x⊕ x̄⊕ 1)g = 0. Equation (1) is a special case of
Eq. (2) with g = 0.

Definition 3: Let f and g be functions with n vari-
ables and (n − 1) variables, respectively. Tx:I(f, g)
(I � {0, 1}) and T (f, g) are defined as follows.

Tx:I(f, g)
= τ (fx:(I⊕{0}) ⊕ g) + τ (fx:(I⊕{1}) ⊕ g)

+τ (fx:(I⊕{0,1}) ⊕ g)
T (f, g)
= min{Tx:{0}(f, g), Tx:{1}(f, g), Tx:{0,1}(f, g)}

✷

An ESOP F can be written in the form F =
x̄Fa⊕xFb⊕Fc, where Fa, Fb, and Fc are ESOPs without
literals of the variable x. F = xFa ⊕ x̄Fb ⊕ Fc is called
an ESOP corresponding to Tx:I(f, g) if Fa, Fb, and Fc

are minimum ESOPs of fx:(I⊕{0}) ⊕ g, fx:(I⊕{1}) ⊕ g,
and fx:(I⊕{0,1}) ⊕ g, respectively. As a property of
an ESOP F corresponding to Tx:I(f, g), F represents
f from Eq. (2), and τ (F ) = Tx:I(f, g) holds from
τ (Fa) = τ (fx:(I⊕{0}) ⊕ g), τ (Fb) = τ (fx:(I⊕{1}) ⊕ g),
and τ (Fc) = τ (fx:(I⊕{0,1}) ⊕ g). An ESOP F corre-
sponding to Tx:I(f, g) is called an ESOP corresponding
to T (f, g) if Tx:I(f, g) = T (f, g). If F is an ESOP corre-
sponding to T (f, g), F represents f and τ (F ) = T (f, g)
holds.

The following theorem is the basic concept of min-
imization [7], [14].

Theorem 1 (Minimization Theorem): Let Fn−1 be
the set of all (n−1)-variable functions. For an arbitrary
n-variable function f , the following equation holds.

τ (f) = min{T (f, g) | g ∈ Fn−1}
✷

From Theorem 1, we can construct a simple min-
imization algorithm, which is shown as min-esop in
Fig. 1. In the algorithm, a minimum ESOP of an arbi-
trary n-variable function f for n � m and the number of
products τ (f) are assumed to be known as the terminal
condition of the recursive algorithm. For example, m

function min-esop(f) : (integer, ESOP );
{ f is an n-variable function }
var t0, t1, t2, t3, s : integer;
var F0, F1, F2, F3, F : ESOP ;
begin

if n � m then return (τ(f), a minimum ESOP of f);
s := a large integer;
for g ∈ Fn−1 do begin

(t0, F0) := min-esop(fx:{0} ⊕ g);

(t1, F1) := min-esop(fx:{1} ⊕ g);

(t2, F2) := min-esop(fx:{0,1} ⊕ g);

(t3, F3) := min-esop(fx:{} ⊕ g);

if T (f, g) � s then (s, F ) := (T (f, g), an ESOP corre-
sponding to T (f, g))

end;
return (s, F )

end;

Fig. 1 min-esop: A simple minimization algorithm.
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can be 4 since a list of minimum ESOPs for all functions
with four or less variables has been presented in [10]. In
min-esop, T (f, g) can be computed from t0, t1, . . . , t3,
and an ESOP corresponding to T (f, g) can be obtained
from F0, F1, . . . , F3.

In min-esop, a minimum ESOP of f can be ob-
tained together with τ (f), that is, a minimum ESOP
and τ (f) can be obtained by the same algorithm. Al-
though, in the rest of this paper, we focus on obtaining
τ (f) to simplify the discussion, the discussion includes
obtaining a minimum ESOP on the analogy of Theo-
rem 1 and min-esop.

The simple minimization algorithm min-esop re-
quires very large computing time since the time com-
plexity mainly depends on the number of functions of
Fn−1 (|Fn−1| = 22n−1

). Then we attempt to reduce
the set Fn−1 to some subset specified by an optional
parameter k.

Definition 4: Let f be an n-variable function and k
be a non-negative integer. τ [k](f) is defined as follows.

τ [k](f) = min{T (f, g) | g ∈ Fn−1 and τ (g) � k}
✷

An algorithm obtaining τ [k](f) is shown in Fig. 2,
in which (n−1)-variable functions g such that τ (g) � k
are generated by EXOR-combinations of at most k
products. Pn−1 used in naive-tau is the set of all
(n − 1)-variable functions that can be represented by
exactly one product. Although the values of τ (g) and
T (f, g) should be passed to the procedure S(g,P) as
its additional arguments to avoid computing the same
values for practical programming, those arguments are
omitted in Fig. 2 for simplicity of the description.

Theorem 2: naive-tau[k](f) = τ [k](f)

Proof: It is obvious that the algorithm naive-tau
computes T (f, h) for all functions h = g ⊕ p such that
τ (g⊕p) � k, and does not compute T (f, h) for functions

function naive-tau[k](f) : integer;
{ f is an n-variable function and k is a nonnegative integer }
var s : integer;

procedure S(g,P);
{ g is an (n− 1)-variable function and P is a set of products
}
begin

if τ(g) � k or P = ∅ then return;
p ∈ P;
if τ(g ⊕ p) = τ(g) + 1 then begin

s := min{s, T (f, g ⊕ p)};
S(g ⊕ p,P − {p})

end;
S(g,P − {p})

end;
begin

if n � m then return τ(f);
s := T (f, 0);
S(0,Pn−1);
return s

end;

Fig. 2 naive-tau: An algorithm for τ [k](f).

h such that τ (h) > k. Hence we have the theorem. ✷

The following lemmas are used in the later sections.

Lemma 1: Let f and g be functions with n vari-
ables and (n − 1) variables, respectively. The follow-
ing equation holds for arbitrary subscripts I and J
(I, J � {0, 1}).

Tx:I(f, g) = Tx:J (f, fx:(I⊕J) ⊕ g)

Proof:

Tx:J (f, fx:(I⊕J) ⊕ g)
= τ (fx:(J⊕{0}) ⊕ fx:(I⊕J) ⊕ g)

+ τ (fx:(J⊕{1}) ⊕ fx:(I⊕J) ⊕ g)
+ τ (fx:(J⊕{0,1}) ⊕ fx:(I⊕J) ⊕ g)

= τ (fx:(I⊕{0}) ⊕ g) + τ (fx:(I⊕{1}) ⊕ g)
+ τ (fx:(I⊕{0,1}) ⊕ g)

= Tx:I(f, g)

✷

Lemma 2: The following inequality holds for arbi-
trary functions f and h.

τ (f ⊕ h) � τ (f)− τ (h)

Proof: Since f ⊕ h ⊕ h = f , τ (f ⊕ h) + τ (h) � τ (f).
✷

3. Pruning for Fast Computation

For a product set P, let H(P) be the set of all func-
tions that can be represented by one product or EXOR-
combinations of products in P. From Fig. 2, it is ob-
served that the procedure S(g,P) searches T (f, g ⊕ h)
on h ∈ H(P) such that τ (g⊕h) = τ (g)+ τ (h) � k, and
s is updated as s := T (f, g⊕h) if T (f, g⊕h) < s. From
the behavior, S(g,P) can be considered as a program
searching for the minimum solution. In this section, we
give a lemma to reduce the search space and improve
the algorithm.

Lemma 3: Let f and g be functions with n variables
and (n − 1) variables, respectively. For any (n − 1)-
variable function h such that τ (g ⊕ h) = τ (g) + τ (h),
the following inequality holds.

T (f, g ⊕ h) � T (f, g)− τ (h)

Proof: From the definition of T (f, g), T (f, g ⊕ h) =
min{Tx:{0}(f, g⊕h), Tx:{1}(f, g⊕h), Tx:{0,1}(f, g⊕h)}.
Without loss of generality, we assume that T (f, g ⊕
h) = Tx:{0,1}(f, g ⊕ h) = τ (fx:{1} ⊕ g ⊕ h) + τ (fx:{0} ⊕
g ⊕ h) + τ (h ⊕ g), where h is a function specified by
the above lemma. From Lemma 2 and the assumption
of the above lemma, the following relations hold for
τ (fx:{1} ⊕ g ⊕ h), τ (fx:{0} ⊕ g ⊕ h), and τ (g ⊕ h).

τ (fx:{1} ⊕ g ⊕ h) � τ (fx:{1} ⊕ g)− τ (h)
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function fast-tau[k](f) : integer;
var s : integer;

procedure S(g,P);
begin

if T (f, g) − (k − τ(g)) � s or P = ∅ then return;

p ∈ P;
if τ(g ⊕ p) = τ(g) + 1 then begin

s := min{s, T (f, g ⊕ p)};
S(g ⊕ p,P − {p})

end;
S(g,P − {p})

end;
begin

if n � m then return τ(f);
s := T (f, 0);
S(0,Pn−1);
return s

end;

Fig. 3 fast-tau: An algorithm for τ [k](f).

τ (fx:{0} ⊕ g ⊕ h) � τ (fx:{0} ⊕ g)− τ (h)
τ (g ⊕ h) = τ (g) + τ (h)

From the above relations, we have the following.

T (f, g ⊕ h)
= Tx:{0,1}(f, g ⊕ h)
� Tx:{0,1}(f, g)− τ (h) � T (f, g)− τ (h)

✷

From Lemma 3, for any h such that τ (g ⊕ h) =
τ (g)+τ (h) � k, T (f, g⊕h) � s is guaranteed if T (f, g)−
(k − τ (g)) � s. In other words, there exists no smaller
T (f, g ⊕ h) than s in the search space of S(g,P) when
T (f, g) − (k − τ (g)) � s. Recall that S(g,P) searches
T (f, g ⊕ h) on h such that τ (g ⊕ h) = τ (g) + τ (h) �
k. We call the condition T (f, g) − (k − τ (g)) � s the
pruning condition.

From the above discussion, we have an improved
algorithm, fast-tau, shown in Fig. 3. The difference
between fast-tau and naive-tau is indicated by the un-
derline in Fig. 3, in which the pruning condition is used
as the terminal condition of S(g,P).
Theorem 3: fast-tau[k](f) = τ [k](f)

Proof: The difference between naive-tau and fast-
tau is the terminal condition of S(g,P); the pruning
condition T (f, g) − (k − τ (g)) � s is used in fast-tau
while the condition τ (g) � k is used in naive-tau. The
pruning condition can be rewritten as τ (g)+(T (f, g)−
s) � k. Moreover T (f, g) � s holds when S(g,P) starts
the execution. So, if the condition τ (g) � k in naive-
tau is true, the pruning condition in fast-tau is also
true. Hence we have naive-tau[k](f) � fast-tau[k](f).

On the other hand, there is a case where the con-
dition τ (g) � k is false but the pruning condition
T (f, g) − (k − τ (g)) � s is true. In this case, the
behavior of fast-tau is different from that of naive-
tau; S(g,P) of fast-tau computes none of T (f, g ⊕ p),
S(g ⊕ p,P − {p}), and S(g,P − {p}). However, in this
case, Lemma 3 guarantees T (f, g ⊕ h) � T (f, g) −

τ (h) � T (f, g) − (k − τ (g))) � s for any h such
that τ (g) + τ (h) = τ (g ⊕ h) � k. Thus the differ-
ence of the behavior does not affect the resulting s,
i.e., naive-tau[k](f) = fast-tau[k](f). Since naive-
tau[k](f) = τ [k](f) from Theorem 2, we have fast-
tau[k](f) = τ [k](f). ✷

4. Upper Bound on k for Minimization

We gave an algorithm to compute τ [k](f) in the previ-
ous section. Our goal is to develop a faster algorithm
to compute τ (f). Since τ [0](f) � τ [1](f) � · · · � τ (f),
τ (f) can be obtained by computing τ [k](f) with a large
enough k. In this section, we consider the upper bound
on k such that τ (f) = τ [k](f).

Definition 5: The minimum k such that τ [k](f) =
τ (f) is denoted by κ(f), namely, κ(f) = min{k |
τ [k](f) = τ (f)}. ✷

From the definitions of κ(f) and τ [k](f), we have
the following properties.

Property 1: τ (f) = τ [k](f) if k � κ(f). ✷

Property 2: κ(f) � τ (g) if τ (f) = Tx:I(f, g). ✷

We present two lemmas about the upper bound on
κ(f).

Lemma 4: κ(f) � τ (f)/3�
Proof: From Theorem 1, there exist g ∈ Fn−1 and
I ∈ {{0}, {1}, {0, 1}} such that

τ (f) = Tx:I(f, g)
= τ (fx:(I⊕{0}) ⊕ g) + τ (fx:(I⊕{1}) ⊕ g)

+τ (fx:(I⊕{0,1}) ⊕ g).

Let τ (fx:(I⊕J)⊕g) (J ∈ {{0}, {1}, {0, 1}}) be the mini-
mum one among τ (fx:(I⊕{0})⊕g), τ (fx:(I⊕{1})⊕g), and
τ (fx:(I⊕{0,1}) ⊕ g). Then, τ (fx:(I⊕J) ⊕ g) � τ (f)/3�
holds. Since Tx:I(f, g) = Tx:J (f, fx:(I⊕J) ⊕ g) from
Lemma 1, τ (f) = Tx:J (f, fx:(I⊕J)⊕g) holds. From this
result and Property 2, we have κ(f) � τ (fx:(I⊕J)⊕g) �
τ (f)/3�. ✷

Definition 6: γ(f) = max{τ (fx:J) | J ∈ {{0}, {1},
{0, 1}}} ✷

Lemma 5: κ(f) � τ (f)− γ(f)

Proof: τ (f) and γ(f) can be written as τ (f) =
Tx:I(f, g) and γ(f) = τ (fx:J), respectively, where I, J ∈
{{0}, {1}, {0, 1}}.

If the relation

τ (fx:(I⊕J) ⊕ g) � τ (f)− τ (fx:J) (3)

is proved, the lemma is proved; since τ (f) =
Tx:I(f, g) = Tx:J(f, fx:(I⊕J) ⊕ g) from Lemma 1, we
have κ(f) � τ (fx:(I⊕J) ⊕ g) � τ (f) − τ (fx:J) =
τ (f) − γ(f) from Property 2 and the relation (3). In
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the following, therefore, we prove the relation (3).
Assume that J = {0} (the cases of J = {1}

and J = {0, 1} can be discussed similarly). Since
τ (f) = Tx:I(f, g) = τ (fx:(I⊕{0}) ⊕ g) + τ (fx:(I⊕{1}) ⊕
g) + τ (fx:(I⊕{0,1}) ⊕ g), τ (fx:(I⊕J) ⊕ g) is written as

τ (fx:(I⊕J) ⊕ g)
= τ (fx:(I⊕{0}) ⊕ g)
= τ (f)− (τ (fx:(I⊕{1}) ⊕ g) + τ (fx:(I⊕{0,1}) ⊕ g)).

Moreover, since (fx:(I⊕{1}) ⊕ g) ⊕ (fx:(I⊕{0,1}) ⊕ g) =
fx:{0} = fx:J , τ (fx:(I⊕{1}) ⊕ g) + τ (fx:(I⊕{0,1}) ⊕ g) �
τ (fx:{0}) = τ (fx:J) holds. Thus, we have

τ (fx:(I⊕J) ⊕ g)
= τ (fx:(I⊕{0}) ⊕ g)
� τ (f)− τ (fx:{0}) = τ (f)− τ (fx:J).

✷

From Lemma 4 and 5, we have κ(f) �
min{τ (f)/3�, τ (f)−γ(f)}. Since τ (f) � T (f, g) holds
for any g ∈ Fn−1, we have the following corollary.

Corollary 1: Let f be an n-variable function and g
be an arbitrary (n − 1)-variable function.

κ(f) � min{T (f, g)/3�, T (f, g)− γ(f)}
✷

From the above corollary, fast-tau[k](f) returns
τ (f) if the value of the parameter k is set as k =
min{T (f, g)/3�, T (f, g) − γ(f)}. Based on this idea,
we have an algorithm obtaining τ (f) by modifying
fast-tau. The algorithm is called min-tau0 and
shown in Fig. 4. In min-tau0, the value of k is
set at the underlined statements. The initial k is
min{T (f, 0)/3�, T (f, 0)− γ(f)}, in which T (f, 0) and
γ(f) are computed by applying min-tau0 recursively.
Similarly, τ (g ⊕ p) and T (f, g ⊕ p) in S(g,P) are com-
puted by applying min-tau0 recursively. During the
execution of S(g,P), the value of k may be updated

function min-tau0(f) : integer;
var s, k : integer;

procedure S(g,P);
begin

if T (f, g) − (k − τ(g)) � s or P = ∅ then return;
p ∈ P;
if τ(g ⊕ p) = τ(g) + 1 then begin

s := min{s, T (f, g ⊕ p)};
k := min{	s/3
, s − γ(f)};
S(g ⊕ p,P − {p})

end;
S(g,P − {p})

end;
begin

if n � m then return τ(f);
s := T (f, 0);
k := min{	s/3
, s − γ(f)};
S(0,Pn−1);
return s

end;

Fig. 4 min-tau0: An algorithm for τ(f).

to be smaller if a smaller s (= T (f, g)) is found. The
search space of min-tau0 is reduced dynamically as the
value of k decreased.

Theorem 4: min-tau0(f) = τ (f)

Proof: It is obvious that min-tau0(f) � τ (f).
We prove min-tau0(f) � τ (f). Let smin be the re-
turn value of the algorithm min-tau0(f). Then let
us consider the return value of the algorithm fast-
tau[kmin](f), where kmin = min{smin/3�, smin −
γ(f)}. While fast-tau[kmin](f) computes T (f, g) for
(n − 1)-variable functions g such that τ (g) � kmin,
min-tau0(f) computes T (f, g) for all functions g used
in fast-tau[kmin](f) and some more functions g. Hence
we have fast-tau[kmin](f) � min-tau0(f). From The-
orem 3, τ [kmin](f) = fast-tau[kmin](f) � min-tau0(f)
holds. And τ (f) = τ [kmin](f) holds because κ(f) �
min{smin/3�, smin − γ(f)} = kmin holds from Corol-
lary 1. Thus, we have τ (f) = τ [kmin](f) � min-
tau0(f). ✷

It is important to decrease the value k for the re-
duction of computing time. Under some conditions, k
can be slightly smaller than that in Corollary 1.

Lemma 6: If τ (f) < s, κ(f) � min{(s − 1)/3�, s −
1− γ(f)} holds.

Proof: From the assumption of the lemma, τ (f) � s−
1. From Lemma 4 and 5, κ(f) � min{τ (f)/3�, τ (f)−
γ(f)}. By replacing τ (f) with s−1, we have the lemma.

✷

From Lemma 6, we have an improved algorithm,
min-tau, shown in Fig. 5. The difference between min-
tau0 and min-tau is indicated by the underlines in
Fig. 5, in which min{(s−1)/3�, s−1−γ(f)} is used in-
stead of min{(s)/3�, s−γ(f)}. From the modification,
min-tau assumes τ (f) < s and tries obtaining a smaller
solution than s. Since the assumption is usually true
during the execution of min-tau, Lemma 6 is useful to
reduce the computing time. If the assumption is false

function min-tau(f) : integer;
var s, k : integer;

procedure S(g,P);
begin

if T (f, g) − (k − τ(g)) � s or P = ∅ then return;
p ∈ P;
if τ(g ⊕ p) = τ(g) + 1 then begin

s := min{s, T (f, g ⊕ p)};
k := min{	(s − 1)/3
, s − 1 − γ(f)};
S(g ⊕ p,P − {p})

end;
S(g,P − {p})

end;
begin

if n � m then return τ(f);
s := T (f, 0);
k := min{	(s − 1)/3
, s − 1 − γ(f)};
S(0,Pn−1);
return s

end;

Fig. 5 min-tau: An algorithm for τ(f).
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in the execution, this means s = τ (f) is guaranteed.

Theorem 5: min-tau(f) = τ (f)

Proof: Let smin be the return value of the algorithm
min-tau(f) and kmin be min{(smin−1)/3�, smin−1−
γ(f)}. From the similar discussion of the proof of Theo-
rem 4, we have τ [kmin](f) = fast-tau[kmin](f) � min-
tau(f) = smin. Suppose τ (f) < smin in contradiction.
Since κ(f) � kmin from Lemma 6, τ (f) = τ [kmin](f) �
min-tau(f) = smin. This is a contradiction. ✷

5. Experimental Results

In the final version of the minimization algorithm min-
tau, we used the following two methods to reduce the
search space.

1. Lower bound on T (f, g ⊕ h): naive-tau and fast-
tau.

2. Upper bound on κ(f): s/3�, s−γ(f), (s−1)/3�,
and s − 1− γ(f).

To test the effectiveness of the above methods,
we implemented twelve algorithms corresponding to all
combinations of these methods and counted the num-
ber of calls for T (f, g ⊕ p) in each algorithm. In our
implementation, the terminating condition of the re-
cursive call is n � 4 (m = 4). We applied these algo-
rithms to all representative functions of LP-equivalence
classes [10], [11] of five-variable functions, the number
of which is 6,936. Table 1 shows an average number of
calls for T (f, g) per representative function. In Table 1,
min-tau0 and min-tau represent κ(f) � min{s/3�, s−
γ(f)} and κ(f) � min{(s−1)/3�, s−1−γ(f)}, respec-
tively, and naive and fast represent algorithms with
and without using the lower bound on T (f, g ⊕ h), re-
spectively. In other words, naive corresponds to using
τ (g) � k as the terminating condition of S(g,P), and
fast corresponds to using T (f, g) − (k − τ (g)) � s in-
stead. From the table, the number of calls is reduced
significantly by changing naive to fast. For the best
reduction, both of (s − 1)/3� and s − 1 − γ(f) are
required as the upper bound on κ(f).

The real computing time of min-tau is also mea-
sured. We implemented the algorithm in C language,
and the program was executed on a computer with
AMD Athlon XP 1900+ 1.61GHz, whose operating
system is Free BSD 4.3-Release. The above 6,936

Table 1 Average number of calls for T (f, g).

κ(f) naive fast
κ(f) � 	s/3
 2537.2 254.2

κ(f) � s − γ(f) 11187.0 676.7
min-tau0 2211.5 240.6

κ(f) � 	(s − 1)/3
 1030.0 174.2
κ(f) � s − 1 − γ(f) 579.0 128.5

min-tau 526.5 120.1

representative functions were minimized in 0.204 sec-
onds; the average computing time was 2.94× 10−5 sec-
onds. All the six-variable symmetric functions, the
number of which is 128, were minimized in 1764.7
seconds; the average time was 13.8 seconds and the
worst time was 100.4 seconds. Among these 128 func-
tions, the maximum τ (f) is 15. The most complex six-
variable function 6bbd-bdd6-bdd6-d66b [11], which is
non-symmetric and its τ (f) is 15, was minimized in 3.7
seconds. No other minimization algorithms that can
minimize such large functions in a practical comput-
ing time are known. The computing time of our algo-
rithm depends on τ (f) and the number of variables.
We believe that our program can minimize any six-
variable functions in a practical computing time since it
is known that τ (f) � 15 holds for any six-variable func-
tions [11]. We also made experiments on seven-variable
functions and found that seven-variable functions with
τ (f) � 10 can be minimized within ten minutes.

By extending our program to the minimization
of the characteristic functions [18], [22], we minimized
some multiple-output functions. Among the results,
we found τ (f) = 7 for ROT4, which is smaller than the
simplification result consisting of eight products [12]
computed by EXMIN2 [18]. ROT4 is the 4-input 3-
output square-root function defined as f = √x+ 0.5�
[22].

6. Conclusions

We presented a faster algorithm of minimizing ESOPs
called min-tau. For a given n-variable function f , the
algorithm searches (n − 1)-variable functions g for the
minimum T (f, g), in which the functions g are gener-
ated by combining at most k products with EXORs.
To reduce the computing time, two methods were in-
troduced: the lower bound on T (f, g) to prune the
branches in the search process and the upper bound
on k to restrict the search space. From the exper-
imental results, it was confirmed that using both of
the above two methods reduces the computing time ef-
fectively. The experimental results on six- or seven-
variable functions suggest that min-tau is fast enough
to minimize any six-variable and some seven-variable
functions. Our algorithm is faster than any other min-
imization algorithms that were ever proposed.
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