
1214
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.5 MAY 2004

PAPER

New Three-Level Boolean Expression Based on EXOR Gates

Ryoji ISHIKAWA†a), Takashi HIRAYAMA††, Goro KODA†, and Kensuke SHIMIZU†, Members

SUMMARY The utilization of EXOR gates often decreases the num-
ber of gates needed for realizing practical logical networks, and enhances
the testability of networks. Therefore, logic synthesis with EXOR gates
has been studied. In this paper we propose a new logic representation:
an ESPP (EXOR-Sum-of-Pseudoproducts) form based on pseudoproducts.
This form provides a new three-level network with EXOR gates. Some
functional classes in ESPP forms can be realized with shorter expressions
than in conventional forms such as the Sum-of-Products. Since many prac-
tical functions have the properties of such classes, the ESPP form is useful
for making a compact form. We propose a heuristic minimization algo-
rithm for ESPP, and we demonstrate the compactness of ESPPs by showing
our experimental results. We apply our technique to some logic function
classes and MCNC benchmark networks. The experimental results show
that most ESPP forms have fewer literals than conventional forms.
key words: EXOR gates, three-level logic, pseudoproduct, compact design,
testability

1. Introduction

Logic synthesis with EXOR gates has been studied for
years [12], [15], [17]–[19]. In many practical networks, the
number of gates can be decreased by using EXOR gates.
Furthermore, it is known that an EXOR-based network en-
hances the testability [5], [14], [16], [20]. Therefore, it is
very important to develop the logic synthesis with EXOR
gates.

The pseudoproduct proposed recently by Luccio et al.
is a generalization of the conventional product, and has an
EXOR-AND form [4], [10], [11]. They also proposed an
EXOR-AND-OR three-level logical form called the Sum-
of-Pseudoproducts (SPP) form, which is obtained by re-
placing the products in the standard Sum-of-Products (SOP)
form with the pseudoproducts. SPP forms can represent
Boolean functions with fewer literals than SOP forms. Fur-
thermore, our investigations found that SPP forms are more
testable than SOP forms [7]. It is known that the class of
autosymmetric functions is suitable for efficient SPP repre-
sentation [1]. The autosymmetric function differs from the
usual symmetric function and can be transferred to itself by
complementing some variables of the function. Although
the ratio of autosymmetric functions to all functions is small,
we found that many practical networks have autosymme-
tries. It is effective for the compactness and the testability of

Manuscript received September 1, 2003.
Manuscript revised December 22, 2003.
†The authors are with the Department of Computer Science,

Gunma University, Kiryu-shi, 376–8515 Japan.
††The author is with the Department of Computer and Informa-

tion Sciences, Iwate University, Morioka-shi, 020–8551 Japan.
a) E-mail: ishikawa@ja4.cs.gunma-u.ac.jp

networks to detect networks including autosymmetric func-
tions, and apply SPP forms to them.

When we realize autosymmetric functions in SPP
forms, all pseudoproducts connected to the OR gate in the
output are disjoint. Therefore, the function is not changed
by replacing the OR gate with the EXOR gate. It is known
that the utilization of the EXOR gate in the output enhances
the testability of the network. If we use the EXOR gate in-
stead of the OR gate in the output of SPP forms, we gain
more compactness and testability. Accordingly, we propose
a new pseudoproduct-based logical form and show the effec-
tiveness in this paper. This form provides an EXOR-AND-
EXOR three-level network. EXOR gates in the first and
third level enhance the testability of the network [8]. The
new three-level networks can be achieved with fewer gates
than conventional two-level networks. We call this new
form EXOR-Sum-of-Pseudoproducts (ESPP). ESPP forms
are also suitable for parity functions, symmetric functions,
and more. Functions belonging to such functional classes
can be found in many practical networks. Therefore, it is
important to realize ESPP forms in these networks.

We also propose an ESPP minimization algorithm
which is heuristic like ESPRESSO-II [3] and EXMIN2 [18].
This algorithm is based on iterative improvements, and re-
quires less time and memory costs than exact minimizations.
In our experiments, we apply our algorithm, which is imple-
mented using C language, to some logic functional classes
and MCNC benchmark networks [13]. The experimental re-
sults show that ESPP forms have fewer literals than conven-
tional forms. In other experiments, we also show that ESPP
forms are especially suitable for autosymmetric functions.

This paper is organized as follows. In Sect. 2, we de-
fine a pseudoproduct and an ESPP form. In Sect. 3, we give
the number of pseudoproducts used to realize some func-
tional classes. Our technique to minimize an ESPP form
is in Sect. 4. Experimental results and conclusions are in
Sects. 5 and 6, respectively.

2. Definition of ESPP Form

In this section, we provide the definitions of pseudoproduct
and ESPP form. We deal with a pseudoproduct proposed by
Luccio and Pagli for realizing an EXOR-AND part of our
ESPP form in this paper. The next definition is a recursive
definition of pseudoproducts [10], [11].

ISHIKAWA et al.: NEW THREE-LEVEL BOOLEAN EXPRESSION BASED ON EXOR GATES
1215

[Definition 1]

1. Any single point in the Boolean n-space Bn (B ∈ {0, 1})
is regarded as a pseudoproduct of degree 0.

2. P with 2m points is a pseudoproduct of degree m if P
can be divided into two disjoint pseudoproducts P1, P2

of degree m− 1, and there exists a subset α of variables
such that P2 can be derived from P1 by complementing
the variables in α.

[Example 1] We consider a pseudoproduct for realizing a
function in Fig. 1. This function represents a pseudoproduct
of degree 2 (it has 4=22 points). An initial solution of the
function is an EXOR of minterms corresponding to the sin-
gle points A, B, C, and D. These minterms are pseudo-
products of degree 0:

x̄0 x̄1x2x3 ⊕ x̄0x1 x̄2x3 ⊕ x0 x̄1x2x3 ⊕ x0x1 x̄2x3 (1)

Next, we expand the minterms to new pseudoproducts.
Since any pair of points is a pseudoproduct from Defini-
tion 1-2, both sets of the minterms {A, C} and {B, D} are
pseudoproducts of degree 1. Then, we can represent the
function by the following expression:

x̄1 x2x3 ⊕ x1 x̄2x3 (2)

Factoring these two pseudoproducts, we find a pseudo-
product of degree 2:

(x1 ⊕ x2)x3 (3)

Note that the above pseudoproduct, which includes the
minterms {A, B, C, D}, can be divided into two disjoint
pseudoproducts {A, C} and {B, D}, and there exists a sub-
set of variables α = {x1, x2} such that {B, D} can be derived
from {A, C} by complementing the literals of the variables
in α.

We now give the definition of an ESPP form.

[Definition 2] An EXOR-Sum-of-Pseudoproducts (ESPP)
form is a logical form connected by the EXOR-sum of
pseudoproducts.

[Property 1] An arbitrary n-variable function can be repre-
sented by an ESPP form.

Fig. 1 Example of pseudoproduct.

This form generally provides an EXOR-AND-EXOR three-
level network. It is known that, for almost all functions,
three-level networks require fewer gates than two-level net-
works under the condition that the fan-in and fan-out of
the gates are unlimited [21]. A pseudoproduct may be re-
alized by an AND gate only in some networks. In this case,
the ESPP form provides an AND-EXOR two-level network.
Therefore, we may regard this form as a generalization of
the EXOR-Sum-of-Products (ESOP) form. In this paper we
assume the following conditions.

[Condition 1]

• For any i (0 ≤ i ≤ n − 1, where n is the number of
input variables), both variables xi and x̄i are available
as inputs of the network.
• Each gate of an ESPP form has unlimited fan-in and

fan-out.

A network realizing an ESPP form is called an ESPP net-
work. EXOR gates in the first level of a network are called
EXOR factors, and the outputs of these factors are connected
to the inputs of AND gates in the second level. A pseudo-
product is a product of EXOR-factors. The pseudoproduct is
connected to an EXOR gate in the third level. In some net-
works, EXOR-factors are directly connected to the EXOR
gate in the third level.

As mentioned above, pseudoproducts are the general-
ization of conventional products. The conventional product
corresponds to an AND gate and can be expanded only to-
ward an adjacent product of the same degree on the Kar-
naugh map, while the pseudoproduct corresponds to an
EXOR-AND or an AND form and can be expanded toward
an pseudoproduct of the same degree from Definition 1. It
is known that the utilization of EXOR gates often decreases
the number of gates needed to realize practical logical net-
works. Furthermore, pseudoproduct-based logical forms are
especially suitable to some functional classes, e.g., parity
functions, symmetric functions, autosymmetric functions,
and some well-known functional classes. Since most prac-
tical networks have the properties of these classes, ESPP
forms are especially suitable for them.

In an ESPP form the minimum representation for the
number of pseudoproducts does not always result in a net-
work with the minimum number of gates. Here, we define
the term minimum as follows.

[Definition 3] For a given function, an ESPP form is the
minimum for the number of pseudoproducts (PPmin) if there
exists no ESPP form representing the same function with
fewer pseudoproducts. Similarly, an ESPP form is the min-
imum for literals (Lmin) if there exists no ESPP form repre-
senting the same function with fewer literals.

There is no impartial method for comparing a two-level
network with a three-level network. Therefore, we employ
Lmin as the minimization goal in this paper.

[Example 2] We now consider an example which realizes a

1216
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.5 MAY 2004

Table 1 A function f .

x0 x1 x2 x3 f
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Fig. 2 Example of ESPP.

given function by an ESPP form. Table 1 shows a 4-variable
function. We can express this function by an ESPP form:

f = (x0 ⊕ x2) ⊕ (x1 ⊕ x2)x3 (4)

Figure 2 shows a map representing a minimum ESPP form
on PPmin and Lmin for the function. In this figure, the loop
of the solid line and the loops of broken line correspond to
expressions (x1 ⊕ x2)x3 and (x0 ⊕ x2), respectively. Each
expression is a pseudoproduct of the function. Therefore,
this form has 2 pseudoproducts and 5 literals. We can also
realize this function by the conventional SOP (Eq. (5)) and
SPP (Eq. (6)) forms:

f = x̄0 x1x3 + x0 x̄1x3 + x̄0x2 x̄3 + x0 x̄2 x̄3 (5)

= (x0 ⊕ x1)x3 + (x0 ⊕ x2)x̄3 (6)

This SOP form has 4 products and 12 literals, and this SPP
form has 2 pseudoproducts and 6 literals. The ESPP form
has a smaller expression than the SOP and SPP forms.

The autosymmetric function [1], [2] is strongly related
to pseudoproduct-based representations, and is defined as
follows.

[Definition 4] A Boolean function f in {0, 1}n is closed un-
der α, with α ∈ {0, 1}n, if for each w ∈ {0, 1}n, w ⊕ α ∈ f if
and only if w ∈ f .

[Definition 5] A set L f = {α : f is closed under α} is
called a linear space of f . L f has dimension k = log |L f |,
where |L f | denotes the number of elements in the set L f .

Fig. 3 Autosymmetric function.

[Definition 6] A function f is k-autosymmetric, or equiva-
lently f has autosymmetry degree k, 0 ≤ k ≤ n, if its linear
space L f has dimension k. If k ≥ 1, f will be simply called
autosymmetric.

[Example 3] We show a 4-variable autosymmetric func-
tion f in Fig. 3 as an example. Since the function f can be
transferred to itself by complementing the variables x0 and
x1, f is closed under 1100. Similarly, f is also closed under
0000, 1010 and 0110. Then, L f = {0000, 0110, 1010, 1100},
and f is 2-autosymmetric.

3. Number of Pseudoproducts

In this section we discuss the number of pseudoproducts and
the complexity of pseudoproducts for realizing some func-
tional classes.

[Definition 7] Let M be the set of all minterms with n vari-
ables, and P and PP be the set of all possible products and
pseudoproducts, respectively. In this paper the sets of prod-
ucts and pseudoproducts do not include the constant func-
tion 0; they do not include the constant function 1 (we define
the number of literals as 0 in this case).

[Property 2] From Definition 7, the following properties
hold: M ⊆ P ⊆ PP. The number of minterms M and
pseudoproducts P is |M| = 2n and |P| = 3n, respectively,
where |S | denotes the number of elements in the set S .

Since a pseudoproduct is the generalization of the con-
ventional product, all of the products are included in the
pseudoproducts. Therefore, the number of pseudoproducts
is larger than the number of products. We derive the number
of pseudoproducts of an n-variable functions (2 ≤ n ≤ 6).
This result is in Table 2. Each row shows the number of
pseudoproducts of degree m (0 ≤ m ≤ 6). The num-
ber of n-variable pseudoproducts of degree 1 (2 points) is(

2n

2

)
=

2n(2n−1)
2 = 2n−1 · (2n−1). In SOPs, the number of prod-

ucts of degree 1 is 2n−1 · n. The numbers of pseudoproducts
with degrees greater than 1 are based on the combination
of pseudoproducts of degree 1. Therefore, the number of
pseudoproducts of an n-variable function grows exponen-
tially with the number of inputs n.

Since the number of pseudoproducts is larger than the

ISHIKAWA et al.: NEW THREE-LEVEL BOOLEAN EXPRESSION BASED ON EXOR GATES
1217

number of products, the pseudoproduct-based expressions
may represent any n-variable functions with much smaller
products than the product-based expressions.

We derive the number of pseudoproducts for n-variable
functions, including parity functions and symmetric func-
tions. Table 3 shows the number of products for realizing
these functional classes by SOP, ESOP, SPP, and ESPP. In
this table, n is the number of inputs, 2r = n, and 3q = n.
The numbers of products in SOPs and ESOPs are shown in
[21] and the number of products in SPPs are derived from
the definition of SPPs and the papers [1], [2], [11]. Here, we
prove the ESPPs’ case:
(proof) The number of pseudoproducts of ESPPs in Table 3
is obtained as follows.

Parity function: since an EXOR factor is regarded as a
single pseudoproduct, the number of the parity function is
1.

x1 x2 + x3x4 + · · · + xn−1 xn :

x1x2 + x3x4 + · · · + xn−1 xn

= (1 ⊕ x1x2)(1 ⊕ x3x4) · · · (1 ⊕ xn−1xn) (7)

= 1 ⊕ x1x2 ⊕ · · · ⊕ xn−1 xn ⊕ x1x2x3x4 ⊕ · · ·
⊕xn−3xn−2xn−1xn ⊕ · · · ⊕ x1x2 . . . xn−1xn

= x1 x2 ⊕ · · · ⊕ xn−1xn ⊕ x1 x2x3x4 ⊕ · · ·
⊕ xn−3xn−2 xn−1xn ⊕ · · · ⊕ x1 x2 . . . xn−1xn

The number of the EXOR-sum terms 1 ⊕ xi xi+1 in Eq. (7) is
r, where r = n/2 and i = 1, 3,5, . . . , n − 1. In this proof the
input number n is necessarily an even number. The number
of products of the expansion of Eq. (7) is 2r. Therefore, the
number of pseudoproducts is 2r − 1.

x1 x2⊕x3x4⊕· · ·⊕xn−1xn: this function is an ESOP form.
Each of the products is a pseudoproduct, and therefore the
number of pseudoproducts is r (r = n/2).

Symmetric function: we find that the number of
pseudoproducts for realizing a 3-variable symmetric func-
tion is 2 at most. Let us suppose that the number of pseudo-

Table 2 Number of all n-variable pseudoproducts.

degree m \ n 2 3 4 5 6

0 4 8 16 32 64
1 6 28 120 496 2016
2 1 14 140 1240 10416
3 − 1 30 620 11160
4 − − 1 62 2604
5 − − − 1 126
6 − − − − 1

Table 3 Complexity of some functional classes.

forms SOP ESOP SPP ESPP

parity function 2n−1 n 1 1
x1x2 + · · · + xn−1xn r 2r − 1 r 2r − 1
x1x2 ⊕ · · · ⊕ xn−1xn 2r r 2r − 1 r
symmetric function 2n−1 2 · 3r−1 3r−1 22q−1

n-bit adder 6 · 2n − 4n − 5 2n+1 − 1 n2/2 + n/2 n2/2 + n/2

2r = n, 3q = n

products for realizing any (n − 3)-variable symmetric func-
tion (q = n/3) is 22(q−1)−1 at most when q ≥ 2. Any n-
variable symmetric function can be expanded as follows:

f (x1, x2, . . . , xn)

= x̄1 x̄2 x̄3 f000 ⊕ x̄1 x̄2x3 f001 ⊕ · · · ⊕ x1 x2x3 f111

where fa1a2a3 = f (a1, a2, a3, x4, . . . , xn) (ai ∈ B). Since the
function f is symmetric, f001 = f010 = f100 and f011 = f101 =

f110:

f = x̄1 x̄2 x̄3 f000 ⊕ (x̄1 x̄2x3 ⊕ x̄1 x2 x̄3 ⊕ x1 x̄2 x̄3) f001

⊕ (x̄1x2x3 ⊕ x1 x̄2x3 ⊕ x1x2 x̄3) f011 ⊕ x1x2x3 f111

= x̄1 x̄2 x̄3(f000 ⊕ f011) ⊕ (x1 ⊕ x2 ⊕ x3) f001

⊕ (x̄1 ⊕ x̄2 ⊕ x̄3) f011 ⊕ x1x2x3(f111 ⊕ f001)

The subfunctions f000, f001, f011, and f111 are composed of
22(q−1)−1 pseudoproducts at most. The functions f000 ⊕ f011

and f111 ⊕ f001 are also symmetric functions [21]. Then, the
number of pseudoproducts of the function f is 4 ·22(q−1)−1 =

22q−1.
n-bit adder: Luccio et al. [10] show the proof of the

number of pseudoproducts for realizing an n-bit adder in
an EXOR-AND-OR three-level form. Since the pseudo-
products for realizing the n-bit adder are disjoint, we can
also prove the number in an ESPP form by replacing the OR
gate in the output with an EXOR gate. �

Most of the ESPP forms can represent any n-variable
function with fewer products than can SOP and ESOP
forms. Furthermore, practical networks can be efficiently
realized by ESPP forms. ESOP and ESPP forms realizing
a parity function have the same representation. Since parity
function is regarded as a single pseudoproduct, the complex-
ity of ESOP differs from ESPP.

4. Minimization of ESPPs

For the exact minimization of ESPP forms, we have no algo-
rithm except for the exhaustive method. For near-minimum
ESOP forms, most algorithms use iterative improvement
methods. Because this method has shorter time cost and
smaller memory space than the former, we use the iterative
improvement method for the minimization of ESPP forms.
Most iterative algorithms use the Reed-Muller Expansion or
minterms of SOP for their initial solutions. However, these
solutions require excessive memory space when the num-
ber of the inputs is large. Therefore, the initial solutions are
disjoint SOP in our algorithm.

1218
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.5 MAY 2004

[Definition 8] An SOP in which each pair of products is
disjoint is called a disjoint Sum-of-Products expression.

In a disjoint SOP, the OR operators can be replaced
with EXOR operators without changing the function.

This algorithm uses the following rules for expanding,
reducing and reconstructing pseudoproducts.

[Rule 1]

1. EXPAND PP: If there exists a subset α of variables
such that P1 can be derived from P2 by complementing
the variables in α, P1⊕P2 is a set of minterms realizing
a new pseudoproduct P (Definition 1-2).

2. EXPAND: P1 · P2 ⊕ P̄2 → 1 ⊕ P̄1 · P2.
3. MERGE: P1 ⊕ P1 → 0, P1 ⊕ P̄1 → 1, P1 ⊕ 1 → P̄1,

Fig. 4 Examples of minimization rules. (a) (b) EXPAND PP, (c) (d) EXPAND, (e) (f) MERGE,
(g) RESHAPE.

P̄1 ⊕ 1→ P1.
4. RESHAPE: P1 · P2 ⊕ P̄2 → P̄1 · P̄2 ⊕ P1.
5. DESCENDANT: A pseudoproduct P with degrees

greater than 1 is decomposed into two pseudoproducts,
P1 and P2, when one can be generated from the other
by complementing the variables (the reverse operation
of EXPAND PP).

6. REDUCE: 1 ⊕ P̄1 · P2 → P1 · P2 ⊕ P̄2.

Figure 4 shows examples of the above minimization
rules. Among these rules, EXPAND PP and MERGE re-
duce the number of pseudoproducts in an ESPP form. The
other rules do not reduce the number of pseudoproducts,
but modify the shape of the pseudoproducts. Note that the
ESOP minimization algorithm relies only on MERGE to re-

ISHIKAWA et al.: NEW THREE-LEVEL BOOLEAN EXPRESSION BASED ON EXOR GATES
1219

duce the number of the products. EXPAND PP is the expan-
sion operation defined by Definition 1, and provides more
possibilities of expansion than conventional expansion oper-
ations. EXPAND PP and EXPAND are effective for reduc-
ing the number of literals. RESHAPE is used to modify the
shape of pseudoproducts. DESCENDANT and REDUCE
are the reverse operation of EXPAND PP and EXPAND, re-
spectively. DESCENDANT makes disjoint pseudoproducts
P1 and P2 of degree m − 1 from a pseudoproduct P of de-
gree m. The quality of the solution is sensitive to the order
of the rules applied. The following algorithm uses a sim-
ple ordering of the rules. For a multiple-output function,
we decompose it into single-output functions and treat each
function independently.

[Algorithm 1]

1. For a given function f , convert it into a disjoint SOP
form and make it the initial solution F. Let Fmin be the
current minimum solution.

2. Choose the goal of the minimization between PPmin

(the minimum for pseudoproducts) and Lmin (the min-
imum for literals). If PPmin (Lmin) is chosen, let |F| be
the number of pseudoproducts (literals) of the solution
F. Fmin = F.

3. (rearrange routine): For each pair of pseudoproducts of
F, Rule 1 is applied in the following orders, according
to which order is applicable:

a. MERGE→ EXPAND→MERGE
b. EXPAND PP→ EXPAND→MERGE
c. RESHAPE→ EXPAND→MERGE

4. If |Fmin| > |F|, then Fmin = F.
5. If EXPAND or EXPAND PP was applied in step 3, go

to step 3 again.
6. Apply REDUCE and DESCENDANT in this order,

and repeat step 3.
7. If |Fmin| > |F|, then Fmin = F, and go to step 3.
8. Return Fmin.

In step 3 of Algorithm 1, “EXPAND → MERGE” is
a basic process in order to decrease the numbers of liter-
als and pseudoproducts. EXPAND can expand a pseudo-
product only into an adjacent pseudoproduct. Accordingly,
EXPAND PP is applied for expanding pseudoproducts more
flexibly in step 3-b. Since applying the expanding rules only
generates the biased local solutions, RESHAPE is applied
in step 3-c.

5. Experimental Results

Our algorithm in the previous section is implemented us-
ing C on a PentiumIII 550 MHz (22.3 SPECint95) computer
(OS: Solaris 8). We chose the minimum for literals Lmin

for minimization in this experiments. Symmetric functions
can be found in many practical networks. Therefore, we
obtained the average numbers of the products and literals
of each representation (SOP, ESOP, SPP, and ESPP forms)

for realizing the symmetric functions of two to six variables
(Table 4). The SPP form is an EXOR-AND-OR three-level
form proposed by Luccio et al. [10]. The SOP, ESOP, and
ESPP forms in this paper were obtained by our algorithms.
In Table 4, #P, #L and #PP denote the number of products,
literals, and pseudoproducts, respectively. Since the con-
cept of products differs from pseudoproducts, we can not
compare them simply. However, the numbers of the literals
of the ESPP forms are the smallest of the four, except in the
case of n = 2. These results show that an ESPP form is
effective for realizing functions.

Next, we give the number of products and literals
on MCNC benchmark networks [13]. In this experiment,
the multiple-output functions were decomposed into single-
output functions and each function was minimized indepen-
dently by Algorithm 1 (Table 5). In this table, “network”
denotes the names of the benchmark networks and the num-
bers in parentheses are the output numbers. #I denotes the
number of inputs of the networks. Most MCNC benchmark
networks have autosymmetries, and all of the networks in
this experiment have autosymmetric functions. This table
shows that most of the ESPP forms have the smallest repre-
sentations of four forms. Note that the SPP forms have bet-
ter representation than the SOP and ESOP forms, and some
of these have smaller literals than the ESPP forms. All the
outputs of the networks rd53 and rd73 represent symmetric
functions.

We also compared the CMOS and FPGA costs of our
ESPP forms with the conventional SOP forms on MCNC
benchmark networks (Table 6). In many technologies,
EXOR and AND/OR gates have different costs. Bernasconi
et al. [2] estimate that the cost of the 2-input EXOR gate
is 4, while the cost of the 2-input OR and AND gates is
2. This is in proportion to also to the number of transistors
used for the CMOS technology mapping (i.e., 4 transistors
for AND/OR gates and 8 transistors for the EXOR gate). In
this paper, we regard a k-input EXOR gate as the composi-
tion of k − 1, 2-input EXOR gates for the associative prop-
erty of the EXOR gate. Therefore, we can use the CMOS
cost function µC , where a k-input EXOR gate costs 4(k− 1),
and a k-input AND/OR costs k. Another cost function is
for the field programmable gate arrays (FPGAs). We also
use the FPGA cost function µF , where k-input EXOR gates
and k-input AND/OR gates have the same cost k. These
measures of the costs are used for SPP forms in [2]. In Ta-
ble 6, µ′C is the CMOS cost in SOP networks, and its FPGA
cost is µ′F = µ

′
C . #O denotes the number of outputs of the

networks. In our experiment, the minimization of multiple
output networks has been carried out individually for each
output. This table demonstrates that ESPPs require lower
costs than SOPs in many cases of both CMOS and FPGA
technology mapping. Especially, networks which include
many autosymmetric and/or symmetric functions tend to be
smaller in ESPPs.

Autosymmetric functions are strongly related to SPP
and ESPP forms. It is important for pseudoproduct-based
representations to detect autosymmetric functions. We ob-

1220
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.5 MAY 2004

Table 4 Average number of products and literals for realizing symmetric functions.

n
SOP ESOP SPP ESPP

#P #L #P #L #PP #L #PP #L

2 1.71 2.57 1.37 3.12 1.12 1.62 1.16 2.00
3 2.38 4.23 2.25 4.12 1.62 3.68 1.54 3.62
4 3.83 10.86 4.03 9.31 2.40 7.84 2.37 7.07
5 10.45 42.29 6.57 20.37 3.59 15.60 3.13 14.38
6 20.41 101.27 10.85 40.76 5.41 29.93 5.02 27.98

Table 5 Number of products and literals on MCNC benchmark networks.

network #I
SOP ESOP SPP ESPP

#P #L #P #L #PP #L #PP #L

5xp1 (1) 7 27 136 17 40 5 23 5 22
5xp1 (2) 7 26 141 30 63 5 30 6 34
5xp1 (3) 7 21 113 18 56 6 36 5 28
5xp1 (4) 7 31 162 9 42 5 30 4 26
con1 (1) 7 4 11 9 29 4 11 5 15
con1 (2) 7 5 12 9 24 4 22 4 14
misex1 (1) 8 2 7 8 18 1 5 1 5
misex1 (2) 8 5 18 9 30 4 15 3 11
misex1 (3) 8 5 21 14 47 5 21 4 20
rd53 (1) 5 12 57 10 20 3 12 3 12
rd53 (2) 5 11 44 5 5 1 5 1 5
rd53 (3) 5 5 20 5 20 3 14 3 14
rd73 (1) 7 35 140 18 42 13 76 9 24
rd73 (2) 7 43 258 33 154 10 82 11 88
rd73 (3) 7 64 448 7 7 1 7 1 7
squar5 (1) 5 9 21 3 11 2 6 3 11
squar5 (2) 5 11 25 5 15 3 9 2 8
squar5 (3) 5 11 25 5 16 4 13 4 15
squar5 (4) 5 14 40 7 20 4 16 3 12
sqrt8 (1) 8 26 113 23 90 10 61 9 57
sqrt8 (2) 8 10 33 11 34 6 25 7 28
sqrt8 (3) 8 3 6 5 9 3 6 3 6
sqrt8 (4) 8 2 2 2 2 1 2 1 2
xor5 (1) 5 16 80 5 5 1 5 1 5

Table 6 CMOS and FPGA costs on MCNC benchmark networks.

network #I #O
ESPP SOP ESPP/SOP
µC µF µ′C µC/µ

′
C µF/µ

′
F

bw 5 28 380 239 436 0.87 0.55
clip 9 5 408 324 748 0.55 0.43
con1 7 2 57 38 32 1.78 1.18
inc 7 9 207 121 223 0.93 0.54
misex1 8 7 172 125 154 1.12 0.81
rd53 5 3 72 46 171 0.42 0.30
rd73 7 3 214 122 833 0.26 0.15
rd84 8 4 622 306 2029 0.31 0.15
sao2 10 4 297 219 431 0.69 0.51
Z5xp1 7 10 82 56 341 0.24 0.16
Z9sym 9 1 203 135 588 0.35 0.23
z4 7 4 87 57 311 0.28 0.18

Table 7 Average number of literals for realizing autosymmetric functions.

n #func. SOP ESOP SPP ESPP

3 (autosymmetric) 72 3.819 3.377 2.479 2.330
3 (non-autosymmetric) 184 5.087 4.923 4.217 4.211
4 (autosymmetric) 3072 10.065 8.716 5.323 4.015
4 (non-autosymmetric) 62464 11.818 10.992 8.322 8.621

ISHIKAWA et al.: NEW THREE-LEVEL BOOLEAN EXPRESSION BASED ON EXOR GATES
1221

tained the number of autosymmetries in general functions
by using our detection method [9]. The numbers of 3 and
4-variable autosymmetric functions was 72 and 3072, re-
spectively. The ratio of autosymmetric functions to all func-
tions is small, although we found that many practical net-
works have autosymmetries. Table 7 shows that the aver-
age number of literals for realizing autosymmetric functions
and non-autosymmetric functions. The difference between
the autosymmetric and non-autosymmetric functions in the
ESPPs is larger than in the other forms, and the number of
literals of the autosymmetric function in the ESPP form is
the smallest of the four. Therefore, autosymmetric functions
have a great influence on ESPP forms. ESPP forms are espe-
cially suitable for practical networks which have this prop-
erty.

6. Conclusions

In this paper, we presented a new EXOR-based three-level
representation, i.e., an ESPP form and a algorithm for
ESPP minimization. The minimization algorithm is heuris-
tic based on the iterative improvement. The algorithm con-
tains a complex routine using some expansion and recon-
structing rules, but the time and memory costs are small. In
our experiments, ESPP forms of symmetric functions and
MCNC benchmark networks were generated, and we com-
pared the number of products and literals in the ESPP forms
with those in the three other forms (SOP, ESOP, and SPP).
In most functions and benchmarks, the number of literals
in the ESPP forms are the smallest of the four. In addition,
the number of literals on autosymmetric functions was ob-
tained. These experimental results show that the ESPP form
has a small representation on practical networks. Our future
investigations will concentrate on faster and more effective
procedures for minimizing ESPP forms, and a minimization
algorithm for multiple-output networks.

References

[1] A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli, “Fast three-
level logic minimization based on autosymmetry,” DAC 2002 Proc.,
pp.425–430, June 2002.

[2] A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli, “Three-level logic
minimization based on function regularities,” IEEE Trans. Comput.,
vol.22, no.8, pp.1005–1016, Aug. 2003.

[3] R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis,
Kluwer, Norwell, MA, 1984.

[4] V. Ciriani, “Logic minimization using exclusive OR gates,” DAC
2001 Proc., pp.115–120, June 2001.

[5] R. Drechsler, H. Hengster, H. Schäfer, J. Hertmann, and B.
Becker, “Testability of 2-level AND/EXOR circuits,” EDAC’97
Proc., pp.548–553, March 1997.

[6] S.L. Hurst, D.M. Miller, and J.C. Muzio, Spectral techniques in dig-
ital logic, Academic Press, 1985.

[7] R. Ishikawa, T. Igarashi, T. Hirayama, and K. Shimizu, “Logic rep-
resentation with EXOR operations and its testability,” ICFS 2000
Proc., pp.11-1–11-6, March 2002.

[8] R. Ishikawa, T. Igarashi, T. Hirayama, and K. Shimizu,
“Pseudocube-based expressions to enhance testability,” IEEE

APCCAS 2002 Proc., pp.305–310, Dec. 2002.
[9] R. Ishikawa, G. Koda, and K. Shimizu, “Detection of autosymmetry

in logic functions using spectrum technique,” IEICE Trans. Inf. &
Syst., vol.E86-D, no.12, pp.2691–2697, Dec. 2003.

[10] F. Luccio and L. Pagli, “Normal matrices, pseudo-cubes and pseudo-
products,” Congressus Numerantium, vol.127, pp.33–56, 1997.

[11] F. Luccio and L. Pagli, “On a new Boolean function with applica-
tions,” IEEE Trans. Comput., vol.48, no.3, pp.296–310, 1999.

[12] P.K. Lui and J.C. Muzio, “Boolean matrix transforms for the mini-
mization of modulo-2 canonical expansions,” IEEE Trans. Comput.,
vol.41, no.3, pp.342–347, March 1992.

[13] K. McElvain, “IWLS’93 Benchmark Set: Version 4.0,” Distributed
as part of the MCNC International Workshop on Logic Synthesis ’93
Benchmark Distribution, May 1993.

[14] D.K. Pradhan, “Universal test sets for multiple fault detection in
AND-EXOR arrays,” IEEE Trans. Comput., vol.C-27, no.2, pp.181–
187, Feb. 1978.

[15] S.M. Reddy, “Easily testable realization for logic functions,” IEEE
Trans. Comput., vol.C-21, no.11, pp.1183–1188, Nov. 1972.

[16] K.K. Saluja and S.M. Reddy, “Fault detecting test sets for Reed-
Muller canonic networks,” IEEE Trans. Comput., vol.C-24, no.1,
pp.995–998, Oct. 1975.

[17] T. Sasao, “Logic synthesis with EXOR gates,” in Logic Synthesis
and Optimization, ed. T. Sasao, Kluwer Academic Publishers, 1993.

[18] T. Sasao, “EXMIN2: A simplification algorithm for exclusive-OR-
sum-of-products expressions for multiple-valued input two-valued
output functions,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol.12, no.5, pp.621–632, May 1993.

[19] T. Sasao, “Representations of logic functions using EXOR opera-
tors,” in Representations of Discrete Functions, ed. T. Sasao and M.
Fujita, Kluwer Academic Publishers, 1996.

[20] T. Sasao, “Easily testable realizations for generalized Reed-Muller
expansions,” IEEE Trans. Comput., vol.46, no.6, pp.709–716, June
1997.

[21] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers, 1999.

Ryoji Ishikawa received his B.E., and M.E.
degrees in computer science from Gunma Uni-
versity, Kiryu, Japan, in 1998 and 2001, respec-
tively. He is currently a student of doctor course
in the Department of Computer Science, Gunma
University. His research interests include logic
synthesis and design for testability.

1222
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.5 MAY 2004

Takashi Hirayama received his B.E.,
M.E., and Ph.D. degrees in computer science
from Gunma University, Kiryu, Japan, in 1994,
1996, and 1999, respectively. From 1999 to
2001 he was a research assistant in the Depart-
ment of Electrical and Electronics Engineering,
Ashikaga Institute of Technology. He is cur-
rently a lecturer in the Department of Computer
and Information Sciences, Faculty of Engineer-
ing, Iwate University. His research interests in-
clude high level and logic synthesis and design

for testability.

Goro Koda received his B.E., M.E. degrees
in electronic engineering from Gunma Univer-
sity, Kiryu, Japan, in 1971, and 1973, respec-
tively. In 1973 he joined the NEC corporation.
Since 1975 he has been a research assistant at
the Department of Computer Science, Gunma
University. His research interests include CAD
for logic networks.

Kensuke Shimizu received his B.E., M.E.,
and the Ph.D. degrees in electronic engineering
from Tohoku University, Sendai, Japan, in 1962,
1964, and 1967, respectively. He was a Lec-
turer from 1967 to 1968 and an Associate Pro-
fessor from 1968 to 1976 in the Department of
Electronic Engineering, Faculty of Engineering,
Gunma University. Since 1976 he has been a
Professor in the Department of Computer Sci-
ence, Faculty of Engineering, Gunma Univer-
sity, engaged in research and education in logic

circuits, switch theory, and expert systems.

