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This paper presents an EXOR decomposition with common variable sets, which is an
attempt to decompose an n-variable logic function f into two (n� 1)-variable subfunc-
tions g0 and g1 by using exclusive-or (EXOR) operation. We present the conditions and
formulas for the decomposition. We also consider the subfunction-sharing method for
multiple-output networks as an application of the EXOR decomposition. Experimen-
tal results show that the area of networks is often reduced e�ectively by sharing the
subfunctions obtained by the decomposition.

1. Introduction

Functional decomposition1;7;9 is a basic technique in logic synthesis. Nowadays,

exclusive-OR (EXOR) decompositions3;4;8 are being studied because the use of

EXOR gates often yields more compact networks6. Matsunaga3 and Sasao-Butler8

considered the EXOR decomposition with disjoint sets of variables such that

f(Xn) = g(Xg) � h(Xh) (Xn = fx1; x2; � � � ; xng, Xg [ Xh = Xn, Xg \ Xh = ;)

(Fig. 1). Although the subfunctions g(Xg) and h(Xh) will be relatively small, the

decomposition is applicable to a considerably restricted class of functions only. To

ease the restriction, they also presented the non-disjoint EXOR decomposition with

a common variable x; f(Xn) = g(Xg; x)� h(Xh; x), where Xg and Xh are disjoint

sets of variables and x is disjoint from Xg and Xh. However, these subfunctions

g(Xg), h(Xh), g(Xg; x), or h(Xh; x) have not been formulated, since the variable

sets Xg or Xh are not speci�ed concretely.

In this paper, we propose an EXOR decomposition with common variable sets

(Fig. 2), i.e., f(Xn) = g0(Xn�2; xn) � g1(Xn�2; xn�1), where Xn�2 = fx1; x2; � � � ;
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Fig. 1. Disjoint EXOR decomposition.
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Fig. 2. EXOR decomposition with common variables.
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xn�2g. It means that a function f(Xn) is decomposed into two subfunctions

with (n � 1) variables, g0(Xn�2; xn) and g1(Xn�2; xn�1). Since g0(Xn�2; xn) and

g1(Xn�2; xn�1) have (n � 2) common variables Xn�2, the decomposition is appli-

cable to a larger class of functions. In this paper, the conditions to decompose

functions are presented and g0(Xn�2; xn) and g1(Xn�2; xn�1) are formulated. By

generalizing the decomposition, we also present the multi-decompositions such that

f(Xn) =
M

0�i�m�1

gi(Xn�m; xn�i);

where Xn�m = fx1; x2; � � � ; xn�mg. It means that the function f(Xn) is decom-

posed into m subfunctions with (n�m+ 1) variables.

We also consider the subfunction-sharing method for multiple-output networks

as an application of our decompositions. Experimental results over MCNC bench-

marks show that our EXOR decompositions often reduces the area of networks

e�ectively.

2. EXOR Bi-Decomposition

In this section, an EXOR bi-decomposition such that f(X) = g0(Xn�2; xn)

� g1(Xn�2; xn�1) is considered.

De�nition 1. Xn represents the set of n variables fx1; x2; � � � ; xng.

De�nition 2. For an n-variable function f(Xn) and the variable xn, cofactors

of f(Xn) with xn = 0 and xn = 1 are denoted by f(Xn�1; 0) and f(Xn�1; 1),

respectively. Let f(Xn�1; 2) be f(Xn�1; 0)� f(Xn�1; 1).

Generally f(Xn�i; 0; an�i+2; an�i+3; � � � ; an) and f(Xn�i; 1; an�i+2; an�i+3; � � � ;

an) are de�ned as the cofactors of f(Xn�i+1; an�i+2; an�i+3; � � � ; an) with

xn�i+1 = 0 and xn�i+1 = 1, respectively, where an�i+2; an�i+3; � � � ; an
are constants in f0; 1; 2g. f(Xn�i; 2; an�i+2; an�i+3; � � � ; an) is de�ned as

f(Xn�i; 0; an�i+2; an�i+3; � � � ; an)� f(Xn�i; 1; an�i+2; an�i+3; � � � ; an).

De�nition 3. Literals x, �x, and 1 of a variable x are represented by x2, x1, and

x0, respectively.

An arbitrary function can be expanded uniquely without using negative literals

as follows:
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Theorem 1 (Davio expansion).

f(Xn) = f(Xn�1; 0)� xnf(Xn�1; 2)

= x0nf(Xn�1; 0)� x2nf(Xn�1; 2) (1)

This is referred to as the Davio expansion 2;6 with respect to xn.

By applying the expansion to the cofactors f(Xn�1; 0) and f(Xn�1; 2) with

respect to the variable xn�1 recursively, we have

f(Xn) = f(Xn�2; 0; 0)� xn�1f(Xn�2; 2; 0)

� xnf(Xn�2; 0; 2)� xnxn�1f(Xn�2; 2; 2) (2)

Eq. (2) is called the Davio expansion with respect to fxn�1; xng.

From the four cofactors in Eq. (2), the conditions to decompose a function

f(Xn) into certain subfunctions g0(Xn�2; xn) and g1(Xn�2; xn�1) are derived as

the following lemma.

Lemma 1. A function f(Xn) can be decomposed as f(Xn) = g0(Xn�2; xn) �

g1(Xn�2; xn�1) if and only if all of the following equations hold.8>><
>>:

f(Xn�2; 0; 0) = g0(Xn�2; 0)� g1(Xn�2; 0)
f(Xn�2; 2; 0) = g1(Xn�2; 2)
f(Xn�2; 0; 2) = g0(Xn�2; 2)
f(Xn�2; 2; 2) = 0

Proof: By applying the Davio expansion to g0(Xn�2; xn) and g1(Xn�2; xn�1) with

respect to the variables xn and xn�1, respectively, we have

g0(Xn�2; xn) = g0(Xn�2; 0)� xng0(Xn�2; 2)

g1(Xn�2; xn�1) = g1(Xn�2; 0)� xn�1g1(Xn�2; 2):

Hence

g0(Xn�2; xn)� g1(Xn�2; xn�1) =

g0(Xn�2; 0)� g1(Xn�2; 0)� xn�1g1(Xn�2; 2)� xng0(Xn�2; 2): (3)

Since the right side of Eq. (3) has no negative literals and is represented by

(n� 2)-variable functions, it is the Davio expansion with respect to fxn�1; xng. As

mentioned before, cofactors of the Davio expansion are uniquely de�ned. Therefore,

by comparing Eq. (2) with Eq. (3), we have the above lemma. 2
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From Lemma 1, a function f(Xn) is decomposable if f(Xn�2; 2; 2) = 0.

And g0(Xn�2; 2) and g1(Xn�2; 2) are uniquely de�ned by the cofactors of f(Xn).

g0(Xn�2; 0) and g1(Xn�2; 0) are not unique. However, if g0(Xn�2; 0) is speci�ed,

g1(Xn�2; 0) is determined as g1(Xn�2; 0) = f(Xn�2; 0; 0) � g0(Xn�2; 0). From the

above argument, Lemma 1 can be rewritten as follows.

Theorem 2. Let f(Xn) be an n-variable function. If f(Xn�2; 2; 2) = 0, f(Xn)

has the EXOR decomposition such that f(Xn) = g0(Xn�2; xn) � g1(Xn�2; xn�1),

where

g0(Xn�2; xn) = g00(Xn�2)� xnf(Xn�2; 0; 2)

g1(Xn�2; xn�1) = f(Xn�2; 0; 0)� g00(Xn�2)� xn�1f(Xn�2; 2; 0):

g00(Xn�2) in the above equations is an arbitrary (n� 2)-variable function.

In Theorem 2, the conditions to decompose f(Xn) are presented and the sub-

functions g0(Xn�2; xn) and g1(Xn�2; xn�1) are formulated. Since g0(Xn�2; xn) and

g1(Xn�2; xn�1) have (n � 2) common variables Xn�2, these subfunctions can not

expect becoming compact circuits than those of the disjoint bi-decomposition3;8.

Our decomposition, however, can be applied to larger classes of functions.

3. EXOR Multi-Decompositions

Similar to the EXOR bi-decomposition in Section , the EXOR multi-decompositions

can be obtained; a function f(Xn) is decomposed into m subfunctions with (n �

m+ 1) variables, where m is a constant.

To consider the EXORmulti-decompositions, we give the general form of Eqs. (1)

and (2) by using (n�m)-variable functions.

Corollary 1. An arbitrary function f(Xn) can be expanded uniquely without using

negative literals as

f(Xn) =
M

(cn�m+1;cn�m+2;���;cn)

(x
cn�m+1
n�m+1x

cn�m+2
n�m+2 � � �x

cn
n

� f(Xn�m; cn�m+1; cn�m+2; � � � ; cn)) (4)

where cn�i 2 f0; 2g (0 � i � m� 1).
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Eq. (4) is called the Davio expansion with respect to fxn�m+1; xn�m+2; � � � ; xng

because it can be obtained by applying Eq. (1) recursively with respect to these

variables.

From the cofactors f(Xn�m; cn�m+1; cn�m+2; � � � ; cn) in Eq. (4), the conditions

to decompose a function f(Xn) intom subfunctions g0(Xn�m; xn), g1(Xn�m; xn�1),

� � �, gm�1(Xn�m; xn�m+1) with (n �m + 1) variables are derived as the following

lemma.

Lemma 2. Let m be a constant such that 2 � m � n. A function f(Xn) can be

decomposed as f(Xn) =
L

0�i�m�1 gi(Xn�m; xn�i) if and only if all of the following

equations hold, where cn�i 2 f0; 2g (0 � i � m� 1).

f(Xn�m; cn�m+1; cn�m+2; � � � ; cn)

=

8>>>>>>>>>>><
>>>>>>>>>>>:

0 (
X

0�i�m�1

cn�i � 4)

M
0�i�m�1

gi(Xn�m; 0) (cn�m+1 = cn�m+2 = � � � = cn = 0)

g0(Xn�m; 2) (cn = 2; cn�i = 0 (i 6= 0))
g1(Xn�m; 2) (cn�1 = 2; cn�i = 0 (i 6= 1))

...
gm�1(Xn�m; 2) (cn�m+1 = 2; cn�i = 0 (i 6= m� 1))

Proof: By applying the Davio expansion to g0(Xn�m; xn); g1(Xn�m; xn�1); � � � ;

gm�1(Xn�m; xn�m+1) with respect to the variables xn; xn�1; � � � ; xn�m+1, respec-

tively, we have

M
0�i�m�1

gi(Xn�m; xn�i) =
M

0�i�m�1

(gi(Xn�m; 0)� xn�igi(Xn�m; 2)) (5)

Since the right side of Eq. (5) has no negative literals and is represented by (n�

m)-variable functions, it is the Davio expansion with respect to fxn�m+1; xn�m+2;

� � � ; xng. As mentioned before, cofactors of the Davio expansion are uniquely de-

�ned. Therefore, by comparing the cofactors in Eq. (4) with the subfunctions in

Eq. (5), we have the above lemma. 2

From Lemma 2, a function f(Xn) is decomposable if f(Xn�m; cn�m+1; cn�m+2;

� � � ; cn) = 0 holds for all cn�m+1; cn�m+2; � � � ; cn (cn�i 2 f0; 2g) under the condition
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P
0�i�m�1 cn�i � 4. And gi(Xn�m; 2) (0 � i � m � 1) are uniquely de�ned by

the cofactors of f(Xn). gi(Xn�m; 0) (0 � i � m � 1) are not unique. However,

if gi(Xn�m; 0) (0 � i � m � 2) are speci�ed, gm�1(Xn�m; 0) is determined as

gm�1(Xn�m; 0) = f(Xn�m; 0; 0; � � � ; 0) �
L

0�i�m�2 gi(Xn�m; 0). From the above

argument, Lemma 2 can be rewritten as follows.

Theorem 3. Let f(Xn) be a function and m be a constant (2 � m � n).

If f(Xn�m; cn�m+1; cn�m+2; � � � ; cn) = 0 holds for all cn�m+1, cn�m+2, � � �, cn
(cn�i 2 f0; 2g) under the condition

P
0�i�m�1 cn�i � 4, f(Xn) has the EXOR

decompositions such that f(Xn) =
L

0�i�m�1 gi(Xn�m; xn�i), where

g0(Xn�m; xn) = g00(Xn�m)� xnf(Xn�m; 0; 0; � � � ; 0; 0; 2)

g1(Xn�m; xn�1) = g01(Xn�m)� xn�1f(Xn�m; 0; 0; � � � ; 0; 2; 0)

...

gm�2(Xn�m; xn�m+2) = g0m�2(Xn�m)� xn�m+2f(Xn�m; 0; 2; 0; � � � ; 0; 0)

gm�1(Xn�m; xn�m+1) = f(Xn�m; 0; 0; � � � ; 0)�
M

0�i�m�2

g0i(Xn�m)

�xn�m+1f(Xn�m; 2; 0; 0; � � � ; 0; 0):

g00(Xn�m), g
0
1(Xn�m), � � �, g

0
m�2(Xn�m) in the above equations are arbitrary (n �

m)-variable functions.

In Theorem 3, the conditions to decompose f(Xn) are presented and the subfunc-

tions g0(Xn�m; xn), g1(Xn�m; xn�1), � � �, gm�1(Xn�m; xn�m+1) are formulated.

Thesem subfunctions have (n�m) common variablesXn�m(= fx1; x2; � � � ; xn�mg).

Theorem 3 is a generalization of Theorem 2.

4. Number of Decomposable Functions

In this section, we discuss the number of decomposable functions. It is derived as

the following theorem.

Theorem 4. Let N be the number of decomposable functions with (n�m) common

variables in all n-variable functions. Then, the following equation holds.

2(m+1)�2n�m � N �

�
n

m

�
2(m+1)�2n�m
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Proof: (i) From Corollary 1, a function f(Xn) is speci�ed uniquely by cofactors

f(Xn�m; cn�m+1; cn�m+2; � � � ; cn), where cn�i 2 f0; 2g (0 � i � m � 1). As men-

tioned in Theorem 3, the condition to decompose a function f(Xn) is that f(Xn�m;

cn�m+1; cn�m+2; � � � ; cn) = 0 holds for all cn�m+1, cn�m+2, � � �, cn (cn�i 2 f0; 2g)

such that
P

0�i�m�1 cn�i � 4. Therefore the rest of the cofactors of a decomposable

function f(Xn) have no restrictions, that is, f(Xn�m; cn�m+1; cn�m+2; � � � ; cn)'s

such that
P

0�i�m�1 cn�i � 2 are arbitrary. Since there are (m + 1) assignments

for cn�m+1; cn�m+2; � � � ; cn in this case, a decomposable function is speci�ed by

(m + 1) cofactors. These cofactors are (n � m)-variable functions. Since the to-

tal number of (n � m)-variable functions is 22
n�m

, the number of decomposable

functions is

2(m+1)�2n�m :

This is considered only in the case where Xn�m(= fx1; x2; � � � ; xn�mg) is chosen as

(n�m) common variables to decompose a function.

(ii) Among functions that are not decomposable with Xn�m, there are some

decomposable ones with another combination of (n � m) common variables. We

also consider such cases. Since there are
�
n

m

�
combinations of (n�m) variables, the

number of decomposable functions is at most�
n

m

�
2(m+1)�2n�m :

This is an upper bound because there exist some functions that are decomposable

with more than one combinations of common variables. 2

The number of all the n-variable functions is 22
n

. Compared with 22
n

, our de-

compositions are applicable to restricted classes of functions. However, in Section ,

we can show that many practical functions are decomposable.

5. Subfunction Sharing

In this section, subfunction sharing for multiple-output networks based on the

EXOR bi-decomposition is described. A k-output network is regarded as a set

of k functions. Subfunction sharing for these k functions is an e�ective technique

for the compact logic synthesis.

Among the k functions forming a network, let us assume that there are some

functions that have the EXOR decomposition of Theorem 2. Let f0(Xn) and f1(Xn)

be two of such functions, and be decomposed as

f0(Xn) = g0(Xn�2; xn)� g1(Xn�2; xn�1) (6)
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f1(Xn) = h0(Xn�2; xn)� h1(Xn�2; xn�1); (7)

respectively. From Theorem 2, the above subfunctions g0(Xn�2; xn),

g1(Xn�2; xn�1), h0(Xn�2; xn), and h1(Xn�2; xn�1) are written as

g0(Xn�2; xn) = g00(Xn�2)� xnf0(Xn�2; 0; 2) (8)

g1(Xn�2; xn�1) = f0(Xn�2; 0; 0)� g00(Xn�2)� xn�1f0(Xn�2; 2; 0) (9)

h0(Xn�2; xn) = h00(Xn�2)� xnf1(Xn�2; 0; 2) (10)

h1(Xn�2; xn�1) = f1(Xn�2; 0; 0)� h00(Xn�2)� xn�1f1(Xn�2; 2; 0): (11)

Since both g00(Xn�2) and h00(Xn�2) in Eqs. (8){(11) are arbitrary functions with

(n� 2) variables, two (n� 1)-variable subfunctions may be sharable.

Theorem 5. Let f0(Xn) and f1(Xn) be two functions which have the EXOR bi-

decompositions represented by Eqs. (6){(11). Then g0(Xn�2; xn) is sharable with

h0(Xn�2; xn) if Condition 1 is satis�ed. Similarly g1(Xn�2; xn�1) is sharable with

h1(Xn�2; xn�1) if Condition 2 is satis�ed.

Condition 1: f0(Xn�2; 0; 2) = f1(Xn�2; 0; 2)

Condition 2: f0(Xn�2; 2; 0) = f1(Xn�2; 2; 0)

Proof: If Condition 1 is satis�ed, letting g00(Xn�2) = h00(Xn�2) leads to

g0(Xn�2; xn) = h0(Xn�2; xn).

If Condition 2 is satis�ed, letting g00(Xn�2) = h00(Xn�2) � f0(Xn�2; 0; 0)

� f1(Xn�2; 0; 0) leads to g1(Xn�2; xn�1) = h1(Xn�2; xn�1). 2

On the other hand, the disjoint bi-decompositions are not suitable for subfunc-

tion sharing because the input variables of decomposed subfunctions generally do

not match each other.

If f0(Xn) and f1(Xn) are randomly selected functions, Condition 1 or 2 are

rarely satis�ed. However, functions forming a multiple-output network usually have

correlations and often satisfy these conditions. Theorem 5 is thus applicable to

multiple-output networks.

6. Experimental Results

Table 1 shows the number of decomposable functions with 3 and 4 variables, and

the computing time to check their decomposability for each function on Sun Ultra

30 (CPU: Ultra SPARC-II 250MHz, 10.0 SPECint95). In the table, we count the
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number of functions which have at least one decomposition among all the combina-

tions of (n�m) common variables. The values in parentheses refer to the computing

time (in seconds). The decomposition of m = 2 is applicable to more functions than

the disjoint bi-decomposition3;8.

Table 1. Number of functions with n = 3 and 4 which have the EXOR decompositions

# of var. All func. Disjoint3;8 m = 2 m = 3 m = 4
n = 3 256 26 112 (5:90� 10�5 s) 16 (4:33� 10�5 s)
n = 4 65536 914 15328 (2:45� 10�4 s) 736 (2:16� 10�4 s) 32 (1:33� 10�4 s)

We also apply the decompositions of m = 2; 3; and 4 to MCNC benchmark

networks5. We regard a k-output network as a set of k functions and count the

number of decomposable functions in the set. Among 45 networks experimented,

41 networks have decomposable functions, which are shown in Table 2, and four

networks have no decomposable functions, which are 9sym, clip, cm42a, and sao2.

In the table, the values in parentheses refer to the computing time (in seconds).

The results indicate that our decompositions are applicable to most networks.

Next, we count the number of functions which have decompositions with a same

common variable set in all the functions forming a multiple-output network. In this

experiment, the same set of variables is used as the common variables throughout

the decompositions. Because k functions forming a multiple-output network must

have the same variable sets to use Condition 1,2 in Theorem 5. Table 3 shows

the maximum number of decomposable functions with the same variable sets to all

functions. Since Table 2 is not very di�erent from Table 3, our decompositions with

same common variables are applicable to most networks.

Then we made experiments in subfunction sharing of Theorem 5. By using the

following algorithm, we observe Cs, Cd, Fmax, and F2d for the networks in Table 2

which have more than or equal to one decomposable functions. In the algorithm,

F denotes the set of the functions forming a multiple-output network.
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Table 2. Number of decomposable functions of benchmark networks

Name In Out m = 2 m = 3 m = 4
5xp1 7 10 7 (0.07s) 6 (0.08s) 5 (0.08s)
alu4 14 8 7 (0.41s) 5 (0.82s) 2 (1.26s)
apex1 45 45 45 (0.41s) 45 (0.50s) 45 (0.89s)
apex3 54 50 50 (0.15s) 50 (0.17s) 50 (0.18s)
apex4 9 19 1 (0.42s) 1 (0.61s) 1 (0.73s)
apex5 117 88 88 (0.66s) 88 (1.91s) 88 (3.71s)
apex6 135 99 99 (0.07s) 99 (0.10s) 99 (0.42s)
apex7 49 37 37 (0.07s) 37 (0.07s) 37 (0.08s)
bw 5 28 4 (0.08s) 1 (0.08s) 0 (0.08s)

cm150a 21 1 1 (0.07s) 1 (0.07s) 1 (0.07s)
cm151a 12 2 2 (0.07s) 2 (0.07s) 2 (0.07s)
cm152a 11 1 1 (0.07s) 1 (0.07s) 1 (0.07s)
cm162a 14 5 5 (0.07s) 5 (0.07s) 5 (0.07s)
cm163a 16 5 5 (0.08s) 5 (0.08s) 5 (0.08s)
cm82a 5 3 2 (0.07s) 2 (0.07s) 1 (0.07s)
cm85a 11 3 1 (0.07s) 1 (0.09s) 1 (0.11s)
cmb 16 4 4 (0.08s) 4 (0.08s) 4 (0.09s)
con1 7 2 2 (0.06s) 2 (0.07s) 1 (0.07s)
count 35 16 16 (0.08s) 16 (0.08s) 16 (0.09s)
cu 14 11 11 (0.07s) 11 (0.12s) 11 (0.26)

duke2 22 29 29 (0.09s) 29 (0.10s) 29 (0.11s)
ex5p 8 63 29 (0.40s) 15 (0.42s) 10 (0.52s)
frg1 28 3 3 (0.82s) 3 (0.87s) 3 (1.17s)

misex1 8 7 7 (0.08s) 7 (0.08s) 6 (0.11s)
misex2 25 18 18 (0.08s) 18 (0.12s) 18 (0.87s)
misex3 14 14 2 (0.29s) 1 (0.79s) 0 (1.14s)
misex3c 14 14 12 (0.26s) 9 (0.43s) 8 (1.05s)
parity 16 1 1 (0.07s) 1 (0.07s) 1 (0.07s)
rd53 5 3 1 (0.07s) 1 (0.07s) 1 (0.07s)
rd73 7 3 1 (0.07s) 1 (0.07s) 1 (0.08s)
rd84 8 4 1 (0.09s) 1 (0.09s) 1 (0.09s)
seq 41 35 35 (0.29s) 35 (0.57s) 35 (5.16s)
sqrt8 8 5 3 (0.07s) 3 (0.08s) 2 (0.09s)
squar5 5 8 5 (0.07s) 4 (0.07s) 3 (0.07s)
vda 17 39 39 (0.10s) 39 (0.11s) 39 (0.15s)
vg2 25 8 8 (0.10s) 8 (0.14s) 8 (0.55s)
x1 51 35 35 (0.07s) 35 (0.14s) 35 (2.41s)
x2 10 7 7 (0.06s) 7 (0.07s) 5 (0.10s)
x3 135 99 99 (0.16s) 99 (0.19s) 99 (0.32s)
x4 94 71 71 (0.09s) 71 (0.11s) 71 (0.14s)
xor5 5 1 1 (0.07s) 1 (0.07s) 1 (0.07s)
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Table 3. Number of decomposable functions with same variable set

Name In Out m = 2 m = 3 m = 4
5xp1 7 10 7 (0.08s) 6 (0.09s) 5 (0.10s)
alu4 14 8 7 (0.57s) 3 (1.03s) 2 (2.24s)
bw 5 28 3 (0.08s) 1 (0.08s) 0 (0.08s)

cm151a 12 2 2 (0.07s) 2 (0.08s) 2 (0.10s)
cm162a 14 5 5 (0.08s) 5 (0.13s) 5 (0.38s)
cm163a 16 5 5 (0.08s) 5 (0.15s) 5 (0.62s)
cm82a 5 3 2 (0.07s) 2 (0.07s) 1 (0.08s)
cm85a 11 3 3 (0.08s) 1 (0.10s) 1 (0.13s)
cmb 16 4 4 (0.08s) 3 (0.11s) 3 (0.30s)
con1 7 2 2 (0.07s) 2 (0.07s) 1 (0.07s)
count 35 16 16 (0.23s) 16 (3.14s) 16 (6.71s)
cu 14 11 11 (0.09s) 11 (0.20s) 11 (0.83s)
ex5p 8 63 23 (0.40s) 9 (0.50s) 6 (0.58s)
duke2 22 29 29 (0.45s) 29 (2.75s) 29 (5.74s)
misex1 8 7 7 (0.08s) 7 (0.09s) 6 (0.12s)
misex2 25 18 18 (0.15s) 18 (1.50s) 18 (6.71s)
misex3c 14 14 12 (0.24s) 8 (0.58s) 8 (1.82s)
sqrt8 8 5 3 (0.07s) 3 (0.09s) 2 (0.10s)
squar5 5 8 5 (0.07s) 4 (0.07s) 3 (0.08s)
vda 17 39 39 (0.28s) 39 (1.17s) 39 (5.51s)
vg2 25 8 8 (0.57s) 7 (2.66s) 7 (3.52s)
x2 10 7 7 (0.07s) 7 (0.10s) 7 (0.15s)
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(1) Cs; Cd; Fmax; F2d  0.

(2) Repeat the following for every combination of (n� 2) common variables.

(2-1) Let F 0 be the set of functions in F which have the decomposition with

m = 2 for the selected common variables. Let d jF 0j.

(2-2) Decompose all of d functions in F 0 into 2d subfunctions. Among these

subfunctions, let F be the number of subfunctions reduced by sharing of

Theorem 5.

(2-3) If d > 0, Cd  Cd + 1.

(2-4) If F > 0, Cs  Cs + 1.

(2-5) If F > Fmax, Fmax  F and F2d  2d.

(3) Return Cs, Cd, Fmax, and F2d.

Cd and Cs represent the numbers of cases where the network has decomposable

functions and subfunction sharing, respectively. Cd and Cs is at most
�
n

2

�
, which

is the number of combinations of (n � 2) common variables. Fmax represents the

maximum number of subfunctions reduced by sharing, and F2d represents the total

number of subfunctions without sharing. Table 4 shows the results of Cs, Cd, Fmax,

and F2d, and the computing time for each networks.

The values of Cs are close to those of Cd for almost all of networks in Table 4.

This indicates that subfunction sharing of Theorem 5 is usually applicable when the

network has decomposable functions. Moreover, the large values of Fmax in some

networks demonstrate that Theorem 5 often works e�ectively to reduce network

areas.

7. Conclusions and Comments

In this paper, we proposed an EXOR bi-decomposition with common variable sets

such that f(Xn) = g0(Xn�2; xn)�g1(Xn�2; xn�1). We formulated the decomposed

subfunctions g0(Xn�2; xn) and g1(Xn�2; xn�1), and proved that f(Xn) is decom-

posable if the cofactor f(Xn�2; 2; 2) is logical zero. Decomposed subfunctions are

not unique. It is future work to study the method for determining these subfunc-

tions in order to be most suitable for actual design.

Multi-decompositions were also presented, which decomposed f(Xn) intom sub-

functions with (n �m + 1) variables. These EXOR decompositions are applicable

to many practical functions.

Then we proposed the subfunction-sharing method of the EXOR bi-

decomposition. Experimental results over MCNC benchmarks show that this tech-
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Table 4. Subfunction sharing of EXOR decomposition

Name Cs= Cd=
�
n

2

�
Fmax/F2d Time

5xp1 21/ 21/ 21 9/ 14 0.01s
alu4 55/ 86/ 91 4/ 6 0.54s
bw 4/ 6/ 10 1/ 4 0.01s

cm162a 70/ 88/ 91 6/ 10 0.03s
cm163a 94/120/120 6/ 10 0.02s
cm85a 19/ 23/ 55 1/ 4 0.01s
cmb 38/ 92/120 4/ 6 0.01s
con1 0/ 15/ 21 0/ 0 0.01s
count 582/590/595 28/ 32 0.35s
cu 82/ 91/ 91 18/ 20 0.04s

duke2 223/231/231 52/ 58 0.60s
ex5p 28/ 28/ 28 23/ 46 0.33s
misex1 22/ 23/ 28 10/ 14 0.01s
misex2 291/299/300 32/ 34 0.21s
misex3c 82/ 91/ 91 7/ 10 0.21s
sqrt8 22/ 27/ 28 4/ 6 0.01s
squar5 9/ 10/ 10 5/ 10 0.01s
vda 121/126/126 51/ 78 0.31s
vg2 286/290/300 11/ 14 0.66s
x2 42/ 43/ 45 8/ 10 0.01s
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nique is applicable to most multiple-output networks and often works e�ectively to

reduce the network area.
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