
DRAFT PDF

Journal of Circuits, Systems, and Computers
Vol. 18, No. 3 (2009) 465–486
c© World Scientific Publishing Company

EXACT MINIMIZATION OF AND-EXOR EXPRESSIONS OF
PRACTICAL BENCHMARK FUNCTIONS

TAKASHI HIRAYAMA∗ and YASUAKI NISHITANI†

Department of Computer and Information Sciences,
Iwate University, 4-3-5 Ueda,

Morioka, Iwate 020-8551, Japan
∗hirayama@kono.cis.iwate-u.ac.jp
†nisitani@kono.cis.iwate-u.ac.jp

Revised 13 November 2008

We propose faster-computing methods for the minimization algorithm of AND-EXOR
expressions, or Exclusive-or Sum-Of-Products expressions (ESOPs), and obtain the exact
minimum ESOPs of benchmark functions. These methods improve the search procedure
for ESOPs, which is the most time-consuming part of the original algorithm. For faster

computation, the search space for ESOPs is reduced by checking the upper and lower
bounds on the size of ESOPs. Experimental results to demonstrate the effectiveness of
these methods are presented. The exact minimum ESOPs of many practical benchmark
functions have been revealed by this improved algorithm.

Keywords: AND-EXOR two-level circuit; AND-EXOR expression; exclusive-or sum-of-
products expression; logic minimization algorithm.

1. Introduction

Logic circuits including exclusive-or (EXOR) gates have some advantages over tra-
ditional circuits with only AND and OR gates. EXOR-based realization can improve
the testability1,2,3,4 and often reduces the circuit area.5,6,7,8 For arithmetic func-
tions, error-correcting functions, and telecommunication functions, AND-EXOR
circuits are smaller than AND-OR ones.9 AND-EXOR logic expressions, which cor-
respond to AND-EXOR two-level circuits, have been studied as the fundamentals
of the EXOR-based realization. Current applications of AND-EXOR expressions
are logic synthesis of new type of circuits such as reversible logic circuits10 and
quantum circuits.11

There are several classes of AND-EXOR expressions12,13 such as positive-
polarity Reed-Muller expressions (PPRMs), fixed-polarity Reed-Muller expres-
sions (FPRMs), double-fixed-polarity Reed-Muller expressions (DFPRMs), and
exclusive-or sum-of-products expressions (ESOPs). ESOPs are the expressions such
that arbitrary product terms are combined by EXORs. Among the classes of AND-
EXOR expressions, ESOPs are the most general expressions and require the fewest

465

DRAFT PDF

466 T. Hirayama and Y. Nishitani

product terms to represent logic functions. The number of product terms of an
ESOP F is called the size of F . Among all ESOPs that represent a logic function
f , those with the minimum size are called the exact minimum ESOPs of f , the size
of which is called the size of f for short.

In this paper, minimization means to obtain the exact minimum ESOP of f

and simplification means to reduce the number of product terms in ESOPs without
guaranteeing minimality. In general, minimization is much more time-consuming
than simplification. The exact minimum results, however, can be used to evaluate
the performance of the simplification algorithms, or may be helpful in theoretical
analysis of EXOR-based synthesis such as reversible logic and/or quantum circuits.
As an application to the reversible logic synthesis, the exact minimization of a
general class of ESOPs, called exclusive-or sum of complex terms (ESCTs), has
been studied34.

A lot of algorithms for simplifying ESOPs by applying heuristic rewriting rules
have been proposed14,15,16,17,19; Sasao’s,18 Mishchenko-Perkowski’s,20 and Stergiou-
Voudouris-Papakonstantinou’s38 algorithms are known to be especially efficient.
However, these algorithms do not guarantee the minimality of the resulting ESOPs.
On the other hand, studies of algorithms for minimizing ESOPs are fewer;21,22,23,37

so far, no efficient minimization algorithms for ESOPs are known. It is considered
difficult to minimize ESOPs. In practice, previous minimization algorithms are
applicable only to small functions, e.g. functions whose size is less than eight23 or
functions with at most six variables.24,37

In this paper, we present some acceleration methods for a minimization algo-
rithm of ESOPs. By adding these methods to the base algorithm,24 a more powerful
algorithm can be constructed. It computes minimum ESOPs of several benchmark
functions. In Section 2, we give some definitions and refer to the basic algorithms
for minimization. The efficient methods for time and memory are discussed in Sec-
tion 3. Section 4 extends our algorithms to minimization of multiple-output func-
tions. Section 5 shows the minimum ESOPs for benchmark functions obtained by
our algorithms as experimental results. The conclusion is given in Section 6.

2. Preliminaries

In this section, we refer to the basic algorithm for minimizing ESOPs.

Definition 1. The size of an ESOP F is the number of product terms of F ,
denoted by τ(F). Among all ESOPs that represent a logic function f , those with
the minimum size are called minimum ESOPs of f . The size of a minimum ESOP
of f is denoted by τ(f).

Example 1. The following logic expressions F1, F2, and F3 are ESOPs that
represent the same logic function f given in Table 1.

F1 = x̄4x̄3x̄2x̄1 ⊕ x̄4x̄3x̄2x1 ⊕ x̄4x̄3x2x̄1 ⊕ x̄4x̄3x2x1 ⊕ x̄4x3x̄2x1 ⊕ x̄4x3x2x̄1 ⊕
x4x̄3x̄2x̄1 ⊕ x4x3x̄2x̄1 ⊕ x4x3x̄2x1 ⊕ x4x3x2x̄1 ⊕ x4x3x2x1

DRAFT PDF

EXACT MINIMIZATION OF AND-EXOR EXPRESSIONS 467

Table 1. Truth table of an example function f

x4 x3 x2 x1 f

0 0 0 0 1

0 0 0 1 1
0 0 1 0 1
0 0 1 1 1

0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0

1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0

1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

F2 = x4x3x2x1 ⊕ x4x3 ⊕ x4x2x1 ⊕ x4x2 ⊕ x4x1 ⊕ x3x2 ⊕ x3x1 ⊕ x3 ⊕ 1

F3 = x̄4x3x̄2x̄1 ⊕ x̄4x3x̄2 ⊕ x̄4x3x̄1 ⊕ x̄4x̄2x̄1 ⊕ x̄4 ⊕ x3x̄2x̄1 ⊕ x3 ⊕ x̄2x̄1

The size of the above ESOPs are τ(F1) = 11, τ(F2) = 9, and τ(F3) = 8. These
are ESOPs of f but not minimum ones in size. The minimum ESOP of f is F4 =
x̄4x3x̄1 ⊕ x̄4x2 ⊕ x4x̄3x̄2x1 ⊕ x̄3x2 ⊕ 1, whose size is τ(F4) = 5. Thus τ(f) = 5.

Definition 2. For an n-variable function f and a variable x, the subfunctions of
f with x = 0 and x = 1 are denoted by fx:{0} and fx:{1}, respectively. Furthermore
fx:{0,1} and fx:{} are defined as fx:{0} ⊕ fx:{1} and the logical zero function 0,
respectively. In general, fx:(I⊕J) (I, J ⊆ {0, 1}, I ⊕J = (I ∪ J)− (I ∩ J)) is defined
as fx:I ⊕ fx:J .

Example 2. Table 2 shows the subfunctions fx4:{0}, fx4:{1}, and fx4:{0,1}
of f given in Example 1. These subfunctions may be written as fx4:{0,1} =
fx4:({0}⊕{1}) = fx4:{0} ⊕ fx4:{1}, fx4:{0} = fx4:({1}⊕{0,1}) = fx4:{1} ⊕ fx4:{0,1}, and
fx4:{1} = fx4:({0}⊕{0,1}) = fx4:{0} ⊕ fx4:{0,1}.

Table 2. Truth tables of subfunctions of f

x3 x2 x1 fx4:{0}
0 0 0 1
0 0 1 1

0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1

1 1 0 1
1 1 1 0

x3 x2 x1 fx4:{1}
0 0 0 1
0 0 1 0

0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1

1 1 0 1
1 1 1 1

x3 x2 x1 fx4:{0,1}
0 0 0 0
0 0 1 1

0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0

1 1 0 0
1 1 1 1

DRAFT PDF

468 T. Hirayama and Y. Nishitani

With subfunctions in Definition 2, an arbitrary function f can be expanded as
follows,13 where I ⊆ {0, 1}.

f = xfx:(I⊕{0}) ⊕ x̄fx:(I⊕{1}) ⊕ fx:(I⊕{0,1}) (1)

The expansion with I = {0, 1} is known as the Shannon expansion, and the expan-
sions with I = {1} and I = {0} are known as the positive Davio and the negative
Davio expansions, respectively. With an arbitrary (n − 1)-variable function g, a
more general expansion holds:

f = x(fx:(I⊕{0}) ⊕ g) ⊕ x̄(fx:(I⊕{1}) ⊕ g) ⊕ (fx:(I⊕{0,1}) ⊕ g), (2)

since (x ⊕ x̄ ⊕ 1)g = 0. Equation (1) is a special case of Eq. (2) with g = 0.

Definition 3. Let f and g be functions with n variables and (n − 1) variables,
respectively. Tx:I(f, g) (I ⊆ {0, 1}) and T (f, g) are defined as follows.

Tx:I(f, g) = τ(fx:(I⊕{0}) ⊕ g) + τ(fx:(I⊕{1}) ⊕ g) + τ(fx:(I⊕{0,1}) ⊕ g)

T (f, g) = min{Tx:{0}(f, g), Tx:{1}(f, g), Tx:{0,1}(f, g)}

The following theorem is the basic principle of minimization.25

Theorem 1. (Minimization Theorem) Let Fn−1 be the set of all (n − 1)-
variable functions. For an arbitrary n-variable function f , the following equation
holds.

τ(f) = min{T (f, g) | g ∈ Fn−1}

From Theorem 1, we can construct a simple minimization algorithm such that
all (n − 1)-variable functions g ∈ Fn−1 are tested, which is shown as min-esop26

in Fig 1. In the algorithm, a minimum ESOP of an arbitrary n-variable function
f for n ≤ n′ and its number of products τ(f) are assumed to be known as the
terminal condition of the recursive algorithm. For example, n′ can be 5 since min-
imum ESOPs for the representative functions with five or less variables has been
presented.27,28 In min-esop, a minimum ESOP of f can be obtained together with
τ(f), that is, a minimum ESOP and τ(f) can be obtained by the same algorithm.
Although, in the rest of this paper, we focus on obtaining τ(f) to simplify the dis-
cussion, it includes obtaining a minimum ESOP on the analogy of Theorem 1 and
min-esop.

In the literature24, we presented a faster algorithm for minimizing ESOPs, which
is called min-tau (shown in Fig. 2). We refer to the algorithm briefly in the following.
Algorithm min-tau tests (n − 1)-variable functions g such that τ(g) ≤ k, where k

is an upper bound on the size of g∗ such that T (f, g∗) = τ(f). The value of k

is obtained by “k := min{b(s − 1)/3c, s − 1 − γ(f)}.” γ(f) is defined as γ(f) =
max{τ(fx:{0}), τ(fx:{1}), τ(fx:{0,1})} and s represents the smallest result so far. The
upper bound k is based on the property that there exists g∗ ∈ G such that T (f, g∗) =

DRAFT PDF

EXACT MINIMIZATION OF AND-EXOR EXPRESSIONS 469

function min-esop(f) : (integer, ESOP);
{ f is an n-variable function }
var F{0}, F{1}, F{0,1}, F{}, F : ESOP ;
var s : integer;
begin

if n ≤ n′ then return (τ(f), a minimum ESOP of f);
s := a large integer;
for g ∈ Fn−1 do begin

(τ(fx:{0} ⊕ g), F{0}) := min-esop(fx:{0} ⊕ g);

(τ(fx:{1} ⊕ g), F{1}) := min-esop(fx:{1} ⊕ g);

(τ(fx:{0,1} ⊕ g), F{0,1}) := min-esop(fx:{0,1} ⊕ g);

(τ(fx:{} ⊕ g), F{}) := min-esop(fx:{} ⊕ g);

Select I ∈ {{0}, {1}, {0, 1}} such that Tx:I(f, g) = T (f, g);
if T (f, g) ≤ s then begin

s := T (f, g);
F := xFI⊕{0} ⊕ x̄FI⊕{1} ⊕ FI⊕{0,1};

end;
end;
return (s, F);

end;

Fig. 1. min-esop: a simple minimization algorithm

τ(f), where G is the set of g such that τ(g) ≤ τ(f)/3 and τ(g) ≤ τ(f)− γ(f). Here
is some intuition for τ(g) ≤ τ(f)/3 and τ(g) ≤ τ(f)−γ(f). A minimum ESOP F is
written in the form F = xG0 ⊕ x̄G1 ⊕ G2. Function g∗ can be any of these Gi and
hence suffices to be the smallest of the three. Thus, the upper bound on the size of
such g∗ is τ(g∗) ≤ τ(f)/3. For the minimum ESOP, xG0⊕x̄G1⊕G2 = x(fx:(I⊕{0})⊕
g∗) ⊕ x̄(fx:(I⊕{1}) ⊕ g∗) ⊕ (fx:(I⊕{0,1}) ⊕ g∗) holds for some I. The index may be
I = {0, 1} for example. Then we have τ(f) = τ(fx:{1}⊕g∗)+ τ(fx:{0}⊕g∗)+ τ(g∗).
From this inequality and the property τ(fx:{1} ⊕ g∗) + τ(fx:{0} ⊕ g∗) ≥ τ(fx:{1} ⊕
g∗ ⊕ fx:{0} ⊕ g∗) = τ(fx:{0,1}), the inequality τ(f) ≥ τ(fx:{0,1}) + τ(g∗) holds. By
transposing the terms, we have τ(g∗) ≤ τ(f) − τ(fx:{0,1}). Since the other cases of
I (I = {0} and I = {1}) are also checked in the algorithm, the inequality can be
τ(g∗) ≤ τ(f) − γ(f).

The candidate functions for g∗ are generated dynamically as g⊕p in S(g,P, tfg)
from the arguments g and P. Pn−1 used as the initial P is the set of all (n − 1)-
variable functions that can be represented by exactly one product. The variables
tfg and tfgp are used to store the results of T (f, g) and T (f, g ⊕ p), respectively.
The simple minimization algorithm min-esop requires very long computation time
since it tests all g ∈ Fn−1 (|Fn−1| = 22n−1

). On the other hand, min-tau is much
faster since it omits to test g when tfg − (k − τ(g)) ≥ s, where (k − τ(g)) is an
upper bound on the possible reduction of the size of T (f, g). Holding the condition
tfg−(k−τ(g)) ≥ s guarantees that further reduction of T (f, g) cannot yield smaller
results than the current smallest result s. This is why the procedure omits the
computation in that case and returns. It has been proved that min-tau computes
τ(f).24 The values of T (f, 0) and γ(f) to obtain the initial k can be computed by
applying the minimization algorithm min-tau recursively. Similarly, τ(g ⊕ p) and

DRAFT PDF

470 T. Hirayama and Y. Nishitani

T (f, g⊕ p) in S(g,P, tfg) are computed by applying min-tau recursively. Although
the value of τ(g) is passed to the procedure S(g,P, tfg) as its additional argument
to avoid computing the same values in practical programming, the declaration of
the argument is omitted in Fig. 2 for the reason of simplicity of the description.

function min-tau(f) : integer;
{ f is an n-variable function }
var s, k : integer;

procedure S(g,P, tfg);

{ g ∈ Fn−1, P is a set of products, tfg is a non-negative integer }
var tfgp : integer;
begin

if tfg − (k − τ(g)) ≥ s or P = ∅ then return;
p ∈ P;
if τ(g ⊕ p) = τ(g) + 1 then begin

tfgp := T (f, g ⊕ p);

s := min{s, tfgp};
k := min{b(s − 1)/3c, s − 1 − γ(f)};
S(g ⊕ p,P − {p}, tfgp);

end;
S(g,P − {p}, tfg);

end;
begin

if n ≤ n′ then return τ(f);
∗s := T (f, 0);
k := min{b(s − 1)/3c, s − 1 − γ(f)};
S(0,Pn−1, s);
return s;

end;

Fig. 2. min-tau: a minimization algorithm

3. Faster Computation

In this section, the acceleration based on min-tau is discussed. T (f, g⊕p) indicated
by the underline in Fig. 2 is one of the most time-consuming part in this algorithm
because the value is computed by applying min-tau recursively. We propose some
methods to reduce the computation in T (f, g ⊕ p) by utilizing the information of
neighborhoods of subfunctions: the lower bounds on the size of subfunctions in
Section 3.1 and the upper bounds in Section 3.2.

3.1. Breaking Conditions for T (f, g ⊕ p)

In Fig. 2, the procedure S(g,P, tfg) computes T (f, g ⊕ p) as indicated by the un-
derline. In this section, we discuss the acceleration in the case of

T (f, g ⊕ p) ≥ s + k − τ(g ⊕ p). (3)

Such a case happens frequently in the computation of min-tau since T (f, g ⊕ p) (a
temporal solution) tends to be larger enough than s (the smallest solution so far).

DRAFT PDF

EXACT MINIMIZATION OF AND-EXOR EXPRESSIONS 471

If the inequality (3) holds, we have T (f, g⊕p) ≥ s because of k− τ(g⊕p) ≥ 0 from
the property of min-tau.24 In this case, the result of “tfgp := T (f, g ⊕ p)” will not
be utilized in the later computation. Specifically, from tfgp = T (f, g⊕p) ≥ s, “s :=
min{s, tfgp}” does not change the value of s, and hence the value of k is unchanged.
The succeeding recursive call S(g ⊕ p,P − {p}, tfgp) terminates immediately since
the terminal condition of S(g⊕p,P−{p}, tfgp), tfgp−(k−τ(g⊕p)) ≥ s, is satisfied
by the inequality (3). Therefore, when the inequality (3) holds in advance or in the
middle of the computation, the computation of T (f, g ⊕ p) can be broken off and
any integer t such that t ≥ s + k− τ(g⊕ p) can be used instead of T (f, g⊕ p). This
idea is summarized below.

Property 1. In the procedure S(g,P, tfg), replacement of T (f, g⊕p) by a function
T ′(f, g, p) does not change the return value of S(g,P, tfg) if T ′(f, g, p) has the
following properties, where l = s + k − τ(g ⊕ p).

(1) If T (f, g ⊕ p) < l, T ′(f, g, p) = T (f, g ⊕ p).
(2) If T (f, g ⊕ p) ≥ l, T ′(f, g, p) ≥ l.

From this idea, we modify T (f, g ⊕ p) to check the inequality (3) by using
τ(fx:{0} ⊕ g), τ(fx:{1} ⊕ g), and τ(fx:{0,1} ⊕ g). These values can be obtained at
the computation of T (f, g), which is done prior to T (f, g ⊕ p). From Definition 3,
T (f, g ⊕ p) is computed from four values: τ(fx:{0} ⊕ g ⊕ p), τ(fx:{1} ⊕ g ⊕ p),
τ(fx:{0,1} ⊕ g ⊕ p), and τ(g ⊕ p). To discuss the breaking conditions of T (f, g ⊕ p),
function M with four arguments is defined.

Definition 4. M(t0, t1, t2, t3) = min{t3 + t2 + t1, t2 + t3 + t0, t1 + t0 + t3}

From Definitions 3 and 4, T (f, g ⊕ p) = M(τ(fx:{0} ⊕ g ⊕ p), τ(fx:{1} ⊕ g ⊕ p),
τ(fx:{0,1} ⊕ g ⊕ p), τ(g ⊕ p)) holds. Since p is a product, the inequalities

τ(fx:{0} ⊕ g ⊕ p) ≥ τ(fx:{0} ⊕ g) − 1 (4)

τ(fx:{1} ⊕ g ⊕ p) ≥ τ(fx:{1} ⊕ g) − 1 (5)

τ(fx:{0,1} ⊕ g ⊕ p) ≥ τ(fx:{0,1} ⊕ g) − 1 (6)

hold. By using τ(fx:{0} ⊕ g) − 1, τ(fx:{1} ⊕ g) − 1, and τ(fx:{0,1} ⊕ g) − 1, lower
bounds of T (f, g ⊕ p) are written by M .

T (f, g ⊕ p)

= M(τ(fx:{0} ⊕ g ⊕ p), τ(fx:{1} ⊕ g ⊕ p), τ(fx:{0,1} ⊕ g ⊕ p), τ(g ⊕ p))

≥ M(τ(fx:{0} ⊕ g ⊕ p), τ(fx:{1} ⊕ g ⊕ p), τ(fx:{0,1} ⊕ g) − 1, τ(g ⊕ p))

≥ M(τ(fx:{0} ⊕ g ⊕ p), τ(fx:{1} ⊕ g) − 1, τ(fx:{0,1} ⊕ g) − 1, τ(g ⊕ p)) (7)

These values of M can be checked during the computation of T (f, g ⊕ p), and
M ≥ s+k−τ(g⊕p) implies the inequality (3). Thus the computation of T (f, g⊕p)
can be broken off when M ≥ s+ k− τ(g⊕ p) holds. From the above discussion and
Property 1, we have a modified version of T (f, g ⊕ p) that has the breaking condi-
tions. The procedure is shown as Ta(f, g, p) in Fig. 3. Although Ta has additional

DRAFT PDF

472 T. Hirayama and Y. Nishitani

arguments to receive the values of τ(fx:{1} ⊕ g), τ(fx:{0,1} ⊕ g), and τ(g ⊕ p), the
declaration of the arguments is omitted in Fig. 3 for simplicity of the description.
A faster version of min-tau is obtained by replacing T (f, g ⊕ p) in min-tau with
Ta(f, g, p). The modified version is called min-tauβ1.

function Ta(f, g, p) : integer;
{ f, g are functions with n and (n − 1) variables, respectively, and p ∈ Pn−1 }
var l, t0, t1, t2 : integer;
begin

l := s + k − τ(g ⊕ p);
t0 := τ(fx:{0} ⊕ g ⊕ p);

if M(t0, τ(fx:{1} ⊕ g) − 1, τ(fx:{0,1} ⊕ g) − 1, τ(g ⊕ p)) ≥ l then return l;

t1 := τ(fx:{1} ⊕ g ⊕ p);

if M(t0, t1, τ(fx:{0,1} ⊕ g) − 1, τ(g ⊕ p)) ≥ l then return l;

t2 := τ(fx:{0,1} ⊕ g ⊕ p);

return M(t0, t1, t2, τ(g ⊕ p))
end;

Fig. 3. Ta: T (f, g ⊕ p) with the breaking conditions

3.2. T (f, g ⊕ p) Using Bounded Algorithm

This section describes acceleration methods of Ta by using an algorithm with upper
bound specification, which has the optional argument su to specify an upper bound
of the return value of the algorithm (Fig. 4). The alternation is that “s := T (f, 0)”
in Fig. 2, indicated by “∗”, is changed into an if form in Fig. 4. If the optional
argument su is specified, the value of su will be the upper bound of min-tau[su](f).
Otherwise, min-tau[su](f) will return the same value as min-tau(f). From this
property, min-tau[su](f) in the case without specifying the optional argument su

is simply written as min-tau(f) hereafter.

function min-tau[su](f) : integer;
{ f is an n-variable function and (optional)su is a non-negative integer }
var s, k : integer;

procedure S(g,P, tfg);
begin

...
end;

begin
if n ≤ n′ then return τ(f);

∗if su is specified then s := min{T (f, 0), su}
else s := T (f, 0);

k := min{b(s − 1)/3c, s − 1 − γ(f)};
S(0,Pn−1, s);
return s;

end;

Fig. 4. min-tau with upper bound specification

DRAFT PDF

EXACT MINIMIZATION OF AND-EXOR EXPRESSIONS 473

Function min-tau[su](f) searches a smaller solution than su. If there exist such
solutions, min-tau[su](f) returns the minimum one among them. Otherwise, it
returns su. This is summarized as the following property.

Property 2. Let su be a non-negative integer.

min-tau[su](f) =
{

τ(f) (if τ(f) < su)
su (if τ(f) ≥ su)

Since the initial value of s in min-tau[su](f) is min{T (f, 0), su}, the search space
of min-tau[su](f) is not larger than that of min-tau(f), that is, the computation
time of min-tau[su](f) is smaller or equal to that of min-tau(f). Therefore, the
computation time for T (f, g ⊕ p) is reduced if min-tau[su] can be used instead of
min-tau to obtain the size of subfunctions required in T (f, g ⊕ p). From this idea,
Ta in Fig. 3 is modified to Tb in Fig. 5, where the underlined steps in Fig. 3 are
changed into if forms using min-tau[su].

function Tb(f, g, p) : integer;
var l, t0, t1, t2 : integer;
begin

l := s + k − τ(g ⊕ p);
if M(τ(fx:{0} ⊕ g), τ(fx:{1} ⊕ g) − 1, τ(fx:{0,1} ⊕ g) − 1, τ(g ⊕ p)) ≥ l

then t0 := min-tau[τ(fx:{0} ⊕ g)](fx:{0} ⊕ g ⊕ p) else t0 := min-tau(fx:{0} ⊕ g ⊕ p);

if M(t0, τ(fx:{1} ⊕ g) − 1, τ(fx:{0,1} ⊕ g) − 1, τ(g ⊕ p)) ≥ l then return l;

if M(t0, τ(fx:{1} ⊕ g), τ(fx:{0,1} ⊕ g) − 1, τ(g ⊕ p)) ≥ l

then t1 := min-tau[τ(fx:{1} ⊕ g)](fx:{1} ⊕ g ⊕ p) else t1 := min-tau(fx:{1} ⊕ g ⊕ p);

if M(t0, t1, τ(fx:{0,1} ⊕ g) − 1, τ(g ⊕ p)) ≥ l then return l;

if M(t0, t1, τ(fx:{0,1} ⊕ g), τ(g ⊕ p)) ≥ l

then t2 := min-tau[τ(fx:{0,1} ⊕ g)](fx:{0,1} ⊕ g ⊕ p)

else t2 := min-tau(fx:{0,1} ⊕ g ⊕ p);

return M(t0, t1, t2, τ(g ⊕ p));
end;

Fig. 5. Tb: T (f, g ⊕ p) using min-tau[su]

Tb in Fig. 5 has three modified parts. Since these modifications are similar,
we explain mainly the first underlined part. The step is to obtain t0. There are
three cases in the computation of the step as follows, where l0 = M(τ(fx:{0} ⊕
g), τ(fx:{1} ⊕ g) − 1, τ(fx:{0,1} ⊕ g) − 1, τ(g ⊕ p)).

Case 1 In the case of l0 < l, t0 = τ(fx:{0} ⊕ g ⊕ p) is obtained at the else clause.
Case 2 In the case of l0 ≥ l and τ(fx:{0}⊕g⊕p) < τ(fx:{0}⊕g), t0 = τ(fx:{0}⊕g⊕p)

is obtained from Property 2.
Case 3 In the case of l0 ≥ l and τ(fx:{0}⊕g⊕p) ≥ τ(fx:{0}⊕g), t0 = τ(fx:{0}⊕g)

is obtained from Property 2.

While t0 in Cases 1 and 2 results in τ(fx:{0} ⊕ g ⊕ p) as well as Ta, t0 in Case 3
results in τ(fx:{0}⊕ g). In Case 3, M(τ(fx:{0}⊕ g⊕p), τ(fx:{1}⊕ g)−1, τ(fx:{0,1}⊕

DRAFT PDF

474 T. Hirayama and Y. Nishitani

g)−1, τ(g⊕p)) ≥ M(t0, τ(fx:{1}⊕g)−1, τ(fx:{0,1}⊕g)−1, τ(g⊕p)) ≥ l holds from
the assumption, and Tb returns l at the second if form. From the above inequality
and the lower bound (7), the return value of Tb satisfies Property 1. The second and
the third underlined parts, obtaining t1 and t2, can be discussed similarly. Thus Tb

can be used instead of Ta.
Among the three cases in the first modified part, the computation time is re-

duced particularly in Case 3. The search space of min-tau[τ(fx:{0}⊕g)](fx:{0}⊕g⊕p)
is smaller or equal to min-tau(fx:{0}⊕g⊕p) because τ(fx:{0}⊕g⊕p) ≥ τ(fx:{0}⊕g)
holds from the assumption of Case 3.

Although Ta in Fig. 3 and Tb in Fig. 5 compute the size of subfunctions in
the order of τ(fx:{0} ⊕ g ⊕ p), τ(fx:{1} ⊕ g ⊕ p), and τ(fx:{0,1} ⊕ g ⊕ p), another
order is also possible. One way for reducing the average computation time is to
compute subfunctions in the increasing order of size. In general, minimization of
a subfunction that has larger size tends to require a longer computation time.
Minimization of such a subfunction will be omitted with a higher probability by
leaving it in the later position. The problem is how to know the size of subfunctions
before minimizing them. One method to predict the size of subfunctions is to check
their lower bounds. In our real program, the computation order for τ(fx:{0}⊕g⊕p),
τ(fx:{1} ⊕ g ⊕ p), and τ(fx:{0,1} ⊕ g ⊕ p) is sorted according to their lower bounds
(4)–(6).

The minimization algorithm using Tb instead of T in Fig. 4 is called min-tauβ2.
One can obtain τ(f) by executing the algorithm without specifying the optional
argument su.

In general, recursive calls consume memory as the call stack. The recursive calls
of the procedure S in our algorithms can be reduced by applying the so-called
tail recursion optimization. The resulting code of min-tauβ2 is shown as min-tau2
in Fig. 6, in which the recursive call S(g,P − {p}, tfg) in the previous version
has been rewritten in iteration, that is, the while statement. Although the call
Sit(g ⊕ p,P, tfgp) still remains recursive in the procedure, this modification has
removed one of the most memory consuming problem in our algorithm. The max-
imum depth of the stack for S(g,P − {p}, tfg) in the previous procedure depends
on the cardinality of P (|P| ≤ |Pn−1| = 3n−1), which is exponential with n. Mean-
while, that for Sit(g ⊕ p,P, tfgp) depends on k ≈ τ(f)/3, which is relatively small
in the exact minimization.

4. Multiple-Output Functions

Practical circuits usually have multiple outputs. It is known that the minimization
problem for multiple-output functions is equivalent to that for the special single-
output functions called characteristic functions.18,29 By extending our algorithm to
the characteristic functions, the exact minimum ESOPs of multiple-output func-
tions can be obtained. Since the extension to the characteristic functions is a con-
ventional technique, we omit the details. In order to make the paper self-contained,

DRAFT PDF

EXACT MINIMIZATION OF AND-EXOR EXPRESSIONS 475

function min-tau[su](f) : integer;
var s, k : integer;

procedure Sit(g,P, tfg);
var tfgp : integer;
begin

while not (tfg − (k − τ(g)) ≥ s or P = ∅) begin
p ∈ P;
P := P − {p};
if τ(g ⊕ p) = τ(g) + 1 then begin

tfgp := Tb(f, g, p);
s := min{s, tfgp};
k := min{b(s − 1)/3c, s − 1 − γ(f)};
Sit(g ⊕ p,P, tfgp);

end;
end;

end;
begin

if n ≤ n′ then return τ(f);
if su is specified then s := min{T (f, 0), su}

else s := T (f, 0);
k := min{b(s − 1)/3c, s − 1 − γ(f)};
Sit(0,Pn−1, s);
return s;

end;

Fig. 6. min-tau2: a memory-efficient version of min-tauβ2

the outline is described in this section.
Let M be a set {0, 1, · · · ,m − 1} and y be a variable of M . For a nonempty

subset S of M , yS is called a multiple-valued-input literal of y, which represents the
following logic function with variable y.

yS =
{

1 (if y ∈ S)
0 (if y 6∈ S)

Let M = {0, 1, · · · ,m − 1} and B = {0, 1}. For a nonnegative integer n, a
function f : Bn × M → B is called an (n,m)-function. Let (h0, h1, · · · , hm−1)
be an n-input m-output function, where hi : Bn → B, i.e., hi is an ordinary n-
variable logic function. The characteristic function f of (h0, h1, · · · , hm−1) is an
(n,m)-function defined as follows.

f(xn, xn−1, · · · , x1, y) =
⊕
a∈M

hiy
{a}

The characteristic function f is a single-output representation of the multiple-
output function, in which the output functions (h0, h1, · · · , hm−1) are identified
by y.

Example 3. Let (h0, h1, h2) be a 2-input 3-output function such that h0, h1,
and h2 are represented by x2x1, x2x1 ⊕ x̄2x̄1, and x̄2x1 ⊕ x2x̄1, respectively. The
straightforward realization requires four product terms, in which x2x1 is shared
between h0 and h1. These are minimum ESOPs for separate output functions.
However, a collection of minimum ESOPs for separate outputs is not always a

DRAFT PDF

476 T. Hirayama and Y. Nishitani

minimum ESOP for a multiple-output function. In fact, the characteristic function
f = h0y

{0}⊕h1y
{1}⊕h2y

{2} can be represented by the following ESOP with three
product terms.

f = x2x1y
{0,1,2} ⊕ x̄2x̄1y

{1,2} ⊕ y{2}

A term p · yS means that p is the product term shared among the output functions
hi such that i ∈ S. Hence, the 3-output function (h0, h1, h2) is realized with three
product terms as follows.

h0 = x2x1

h1 = x2x1 ⊕ x̄2x̄1

h2 = x2x1 ⊕ x̄2x̄1 ⊕ 1

In this way, the minimization problem for multiple-output functions can be
reduced to that for (n, m)-functions.

The subfunctions of an (n,m)-function are defined in the same way as Defini-
tion 2. For an (n,m)-function f and a variable x of B, the subfunctions of f with
x = 0 and x = 1 are denoted by fx:{0} and fx:{1}, respectively. fx:{0,1} is defined
as fx:{0} ⊕ fx:{1}. Note that these subfunctions are (n − 1,m)-functions. By using
these subfunctions, Eqs. (1) and (2) also hold for (n,m)-functions. Then we have
the minimization theorem for (n,m)-functions.30

Theorem 2. For an (n,m)-function f and a variable x of B, τ(f) = min{T (f, g) |
g ∈ F (n−1,m)} holds, where F (n−1,m) is the set of all (n − 1,m)-functions.

Theorem 2 is the same as Theorem 1 in essence. The only difference is Fn−1

in Theorem 1 and F (n−1,m) in Theorem 2. Consequently, the minimization algo-
rithms proposed in this paper are also applicable to (n,m)-functions by replacing
Pn−1 with P(n−1,m), where P(n−1,m) is the set of (n− 1, m)-functions that can be
represented by exactly one product. The cardinality of P(n−1,m) is 3n−1 · (2m − 1).

5. Experimental Results

5.1. Obtaining Minimum ESOPs for MCNC PLA Benchmarks

We implemented the original minimization algorithm min-tau and the proposed
algorithms min-tauβ1 (Fig. 3), min-tauβ2, and min-tau2 (Fig. 6) in the C lan-
guage. These programs were executed on a computer with an AMD Athlon64 3700+
2.2GHz CPU and 1GB memory, whose operating system was Free BSD 6.2. By us-
ing the technique of characteristic functions, we obtained the minimum ESOPs of
some functions in the MCNC PLA benchmark set,31 which has been widely used
for evaluating ESOP-simplification algorithms. The minimum ESOPs of the MCNC
benchmark functions had been unknown except for our preliminary work.35 Algo-
rithm min-tau2 obtained minimum ESOPs of five functions: con1, misex1, rd53,
sqrt8, and t481. The experimental results are shown in Tables 3, 4, and 5.

DRAFT PDF

EXACT MINIMIZATION OF AND-EXOR EXPRESSIONS 477

Table 3 shows the computation time of our programs. The cells marked by
“*” mean that the programs could not obtain the results by execution for four
days and gave up. These results demonstrate the fastness of min-tauβ2. Algorithm
min-tau2 is a stack-efficient version of min-tauβ2. Though the pattern of search,
i.e., the order of choosing a product p and testing the subfunctions fx:I ⊕ g ⊕ p,
is the same in min-tauβ2 and min-tau2 in our realization, min-tau2 is slightly
faster than min-tauβ2 in Table 3. The improvement of time is considered as an
indirect effect of the reduction of memory consumption. Because of the memory
efficiency, only min-tau2 obtained the minimum ESOP of t481. The “-” cells mean
that the programs except for min-tau2 could not obtain the results due to memory
exhaustion. The comparison of max stack depth between min-tauβ2 and min-tau2
is shown in Table 4. In min-tau2, the consumption of stack is reduced significantly.

Table 5 shows a comparison with the state-of-the-art heuristic simplifiers,
EXORCISM-420 and QuiXOR.38 The column “#L” represents the number of liter-
als of the resulting ESOP. For non-exact simplification, the number of products is
represented by τ(F) instead of τ(f). Although the paper38 of QuiXOR did not pro-
vide the simplification results for t481, the related paper39 has given the ESOP of
t481 with 13 products. The results of con1, misex1, rd53, and sqrt8 of EXORCISM-
4 are extracted from the literature38 since those results reported there were newer
and better than the original.20 Our results show that these ESOPs obtained by
EXORCISM-420 and QuiXOR38 are minimum ones. Note that there may be ESOPs
consisting of fewer literals than our results because our minimization algorithms do
not guarantee the minimality of the number of literals. In fact, QuiXOR has ob-
tained the ESOP of misex1 that has fewer literals than our result. This confirms
the superiority of QuiXOR. In comparison of computation time, min-tau2 is far
slower than heuristic simplifiers. While min-tau2 is valuable in theoretical aspects,
EXORCISM-4 and QuiXOR are efficient as simplifiers in practice.

Table 3. Computation time for the MCNC PLA benchmark functions (seconds)

Circuit (in,out) τ(f) min-tau min-tauβ1 min-tauβ2 min-tau2

con1 (7,2) 9 * 116.3 4.1 2.9

misex1 (8,7) 12 * * 19697.0 8373.1
rd53 (5,3) 14 611.6 109.2 16.3 12.8
sqrt8 (8,4) 17 * * 7857.4 6235.9

t481 (16,1) 13 - - - 1913.6

5.2. Minimization Results for Other Benchmarks

In addition to the MCNC PLA benchmarks, min-tau2 obtained the minimum
ESOPs of some of other benchmarks. The brief results for them are given in this
section.

DRAFT PDF

478 T. Hirayama and Y. Nishitani

Table 4. Max stack depth for the MCNC PLA benchmark functions

Circuit min-tauβ2 min-tau2

con1 2917 6
misex1 277750 7
rd53 757 8
sqrt8 5364 9

t481 - 4

Table 5. Comparison with EXORCISM-4 and QuiXOR

EXORCISM-420 QuiXOR38 min-tau2
Circuit τ(F) #L Time[sec]† τ(F) #L Time[sec]† τ(f) #L Time[sec]

con1 9 28 0.33 9 28 7 9 28 2.9
misex1 12 48 1.39 12 46 77 12 48 8373.1
rd53 14 39 0.01 14 39 11 14 39 12.8

sqrt8 17 62 2.33 17 61 21 17 61 6235.9
t481 13 53 1‡ 13 43 1913.6

†: Athlon 1.8GHz, ‡: Pentium III 933MHz

Table 6 shows the minimum results for the MCNC combinational benchmarks.
Cm42a required a longer computation time in spite of relatively smaller number of
inputs. This is mainly because the benchmark has many outputs. The search space
|P(n,m)| increases exponentially with both n and m.

Table 6. τ(f) for the MCNC combinational benchmark functions

Circuit (in,out) τ(f) Time [sec]

C17 (5,2) 6 <0.01
b1 (3,4) 6 <0.01

cm138a (6,8) 9 1434.1
cm151a (12,2) 9 <0.01
cm152a (11,1) 8 <0.01

Circuit (in,out) τ(f) Time [sec]

cm42a (4,10) 11 475255.5
cm82a (5,3) 13 30.5

majority (5,1) 5 <0.01
sqrt8ml (8,4) 8 <0.01

x2 (10,7) 15 4180.7

Table 7 is the results for the arithmetic benchmarks,32 whose definitions are
summarized in Table 8. For these arithmetic benchmarks, Koda-Sasao29 have given
the size of ESOPs obtained by the heuristic simplification algorithm EXMIN2.18

Their results are cited in Table 7 as comparison; the computation time for those
benchmarks was not presented in the paper.29 The minimum results for ADR2,
MLP2, NRM2, and RDM4 have been known29 while those for larger benchmarks
are presented in this paper. The most complex benchmark function that could be
minimized by min-tau2 is NRM3, the size of which is 21. Its very long computation
time is due to the size. From Table 7, EXMIN2 produces minimum results for most
benchmarks with τ(f) ≤ 21 except for NRM3, ROT4, ROT6, and SQR4. This
confirms that EXMIN2 is an efficient simplifier in size of ESOPs.

DRAFT PDF

EXACT MINIMIZATION OF AND-EXOR EXPRESSIONS 479

Table 7. τ(f) for the arithmetic benchmark functions and comparison with EXMIN2

EXMIN229 min-tau2
Circuit (in,out) τ(F) τ(f) Time [sec]

ADR2 (4,3) 7 7 <0.01

ADR3 (6,4) 15 15 27061.8
INC4 (4,5) 7 7 <0.01
INC5 (5,6) 9 <0.01
INC6 (6,7) 11 11 0.20

INC7 (7,8) 13 138.2
INC8 (8,9) 15 73649.0
LOG4 (4,4) 10 10 0.24
LOG5 (5,5) 16 281758.1

MLP2 (4,4) 5 5 <0.01
MLP3 (6,6) 18 18 56258.3
NRM2 (4,3) 7 7 <0.01

NRM3 (6,4) 26 21 1047388.4
RDM4 (4,4) 6 6 <0.01
RDM5 (5,5) 9 <0.01
RDM6 (6,6) 15 15 107065.6

ROT4 (4,3) 8 7 <0.01
ROT5 (5,3) 11 <0.01
ROT6 (6,4) 17 16 122.1
SQR4 (4,8) 15 11 583.3

WGT4 (4,3) 9 9 <0.01
WGT5 (5,3) 14 12.8

Table 8. Arithmetic benchmark functions32

Name (in,out) Function (X, Y ∈ Bn)

ADRn (2n, n + 1) X + Y
INCn (n, n + 1) X + 1

LOGn (n, n) b 2n−1
n

× log2(X + 1)c
MLPn (2n, 2n) X × Y

NRMn (2n, n + 1) b
√

X2 + Y 2 + 0.5c
RDMn (n, n) (5X + 1) mod 2n

ROTn (n, dn/2e) b
√

X + 0.5c
SQRn (n, 2n) X2

WGTn (n, dlog2 ne + 1)
P

1≤i≤n xi, X = (x1, x2, . . . , xn)

We obtained minimum ESOPs of all 7-variable symmetric functions, which are
shown in Table 9 in Appendix. The notation SA

n represents the n-variable symmet-
ric function that outputs 1 if and only if the arithmetic sum of the input values,
i.e.

∑
1≤i≤n xi, is in A. In Table 9, the representative functions of symmetric-L-

equivalence classes28 are presented and the other functions are omitted because
τ(f ′) = τ(f) holds if f ′ is symmetric-L-equivalent to f . The notion of L-equivalence
was originally introduced by Bioul-Davio-Deschamps36. The computation time de-
pends on the size of functions; it took within 1 minute for functions with τ(f) ≤ 15,

DRAFT PDF

480 T. Hirayama and Y. Nishitani

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

6-var. functions 7-var. functions

τ(f)

Fig. 7. Distributions of 6-variable functions (as dotted line) and 7-variable functions (as solid line)

within 1 hour for ones with τ(f) ≤ 17, within 2 weeks for ones with τ(f) ≤ 21,
and within 4 weeks for ones with τ(f) ≤ 24. In 7-variable symmetric functions,
the function S

{0,2,3,5,6}
7 and its symmetric-L-equivalent functions S

{1,2,4,5,7}
7 and

S
{0,1,3,4,6,7}
7 have the largest size of τ(f) = 24. The results are summarized as

τmax(S7) = 24, where τmax(S7) is defined as max{τ(f) | f ∈ S7} and S7 is the set of
all 7-variable symmetric functions. For τmax(S7), the lower bound25 21 ≤ τmax(S7)
and the upper bound9 τmax(S7) ≤ 27 were given previously. These bounds are im-
proved to τmax(S7) = 24 by our results. Similarly, the minimum ESOPs of Table 9
improve the constant factor of the upper and lower bounds9,25,33 on the size of
symmetric functions. The size τmax(S7) = 24 is much smaller than the correspond-
ing maximum size of AND-OR expressions for S7, which is 64 products for the
parity function. We have also experimented on randomly-generated single-output
functions and obtained the distributions of the size of 6- and 7-variable functions
(Fig. 7). In the graph, the dotted line is for 6-variable functions and the solid line
is for 7-variable functions. Most of randomly-generated functions with 7 variables
are of τ(f) = 17 to 19 while symmetric functions contain many large-sized func-
tions such that τ(f) = 20 or more. Symmetric functions tend to be more complex
than randomly-generated functions. This suggests that symmetric functions can
be used as complex single-output benchmarks in the minimization of AND-EXOR
expressions.

6. Conclusion

We presented some acceleration methods for the exact minimization algorithm of
ESOPs. They have reduced the computation in the time-consuming procedure in the
algorithm by using the breaking conditions and the upper bound specification. With
these methods, a new algorithm min-tau2 was constructed. As the experimental
results, min-tau2 minimized many practical benchmark functions in the MCNC
benchmarks, the arithmetic benchmarks, and 7-variable symmetric functions. The
experiments have confirmed that min-tau2 can minimize functions whose size is up

DRAFT PDF

EXACT MINIMIZATION OF AND-EXOR EXPRESSIONS 481

to 10 in a practical computation time. For functions with a size of 11 or more, the
computation time increases sharply with the size, and the extent of applicability
is limited up to (6,6)-functions or 7-variable single-output functions in practice.
However, it is not a theoretical limitation. By taking a very long computation time,
min-tau2 obtained the exact minimum ESOPs of the 16-variable function t481 and
complex symmetric functions with a size of 24. These exact minimum results are
valuable as the basic data for researches related to the EXOR-based logic synthesis
since ESOPs are the most fundamental model of EXOR-based logic expressions.

Appendix A. Minimum ESOPs of 7-variable symmetric functions

Table 9: Minimum ESOPs of 7-variable symmetric functions

τ(f) minimum ESOP

0 S
{}
7 = 0

1 S
{0}
7 = x̄7x̄6x̄5x̄4x̄3x̄2x̄1

2 S
{0,1,2,3,4,5,6}
7 = x7x6x5x4x3x2x1 ⊕ 1

3 S
{1,2,3,4,5,6}
7 = x̄7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x7x6x5x4x3x2x1 ⊕ 1

7 S
{1}
7 = x̄7x̄6x̄5x̄4x̄3x2x1 ⊕ x̄7x̄6x̄5x̄4x̄3 ⊕ x̄7x̄6x̄5x̄4x̄2x̄1 ⊕ x̄7x̄6x̄5x̄3x̄2x̄1 ⊕
x̄7x̄6x̄4x̄3x̄2x̄1 ⊕ x̄7x̄5x̄4x̄3x̄2x̄1 ⊕ x̄6x̄5x̄4x̄3x̄2x̄1

8 S
{0,1,7}
7 = x̄7x̄6x̄5x̄4x̄3x2x1 ⊕ x̄7x̄6x̄5x̄4x̄3 ⊕ x̄7x̄6x̄5x̄4x̄2x̄1 ⊕ x̄7x̄6x̄5x̄3x̄2x̄1 ⊕
x̄7x̄6x̄4x̄3x̄2x̄1 ⊕ x̄7x̄5x̄4x̄3x̄2x̄1 ⊕ x7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x7x6x5x4x3x2x1

S
{1,3,5}
7 = x7x6x5x4x3x2x1 ⊕ x7 ⊕ x6 ⊕ x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1

9 S
{0,1,3,5}
7 = x̄7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x7x6x5x4x3x2x1 ⊕ x7 ⊕ x6 ⊕ x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1

14 S
{1,2}
7 = x̄7x̄6x5x̄4x2x̄1⊕x̄7x̄6x5x4x̄3x̄2⊕x̄7x̄6x̄4x3x̄1⊕x̄7x̄6x̄3x̄2x1⊕x̄7x6x̄5x̄4x3x̄2x1⊕
x̄7x6x̄5x̄3x̄1 ⊕ x̄7x̄5x̄4x̄2 ⊕ x̄7x̄5x4x̄3x2x̄1 ⊕ x7x̄6x̄5x̄4x̄3x2x1 ⊕ x7x̄6x̄5x4x3x̄2x̄1 ⊕
x7x6x5x̄4x̄3x̄2x̄1 ⊕ x̄6x̄5x̄4x̄3 ⊕ x̄6x̄5x̄2x̄1 ⊕ x̄4x̄3x̄2x̄1

S
{1,6}
7 = x̄7x̄6x̄5x̄4x̄3x2x1 ⊕
x̄7x̄6x̄5x̄4x̄3 ⊕ x̄7x̄6x̄5x̄4x̄2x̄1 ⊕ x̄7x̄6x̄5x̄3x̄2x̄1 ⊕ x̄7x6x5x̄4x̄3x̄2x̄1 ⊕ x̄7x6x5x4x3x2x1 ⊕
x̄7x̄4x̄3x̄2x̄1 ⊕ x7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x7x̄6x̄5x4x3x2x1 ⊕ x7x6x5x4x3x̄2x̄1 ⊕ x7x6x5x4x3 ⊕
x7x6x5x4x2x1 ⊕ x7x6x5x3x2x1 ⊕ x7x4x3x2x1

S
{0,1,2}
7 = x̄7x̄6x5x̄4x3x2x̄1 ⊕ x̄7x̄6x5x4x̄3x̄2x1 ⊕ x̄7x̄6x̄4x̄1 ⊕ x̄7x̄6x̄3x̄2 ⊕
x̄7x6x̄5x̄4x3x̄2x1 ⊕ x̄7x6x̄5x4x̄3x2x̄1 ⊕ x̄7x̄5x̄4x̄2 ⊕ x̄7x̄5x̄3x̄1 ⊕ x7x̄6x̄5x̄4x̄3x2x1 ⊕
x7x̄6x̄5x4x3x̄2x̄1 ⊕ x7x6x5x̄4x̄3x̄2x̄1 ⊕ x̄6x̄5x̄4x̄3 ⊕ x̄6x̄5x̄2x̄1 ⊕ x̄4x̄3x̄2x̄1

S
{0,1,6}
7 = x̄7x̄6x̄5x̄4x̄3x2 ⊕ x̄7x̄6x̄5x̄4x̄3x1 ⊕ x̄7x̄6x̄5x̄4x̄2x̄1 ⊕
x̄7x̄6x̄5x̄3x̄2x̄1⊕x̄7x6x5x̄4x̄3x̄2x̄1⊕x̄7x6x5x4x3x2x1⊕x̄7x̄4x̄3x̄2x̄1⊕x7x̄6x̄5x̄4x̄3x̄2x̄1⊕
x7x̄6x̄5x4x3x2x1 ⊕ x7x6x5x4x3x̄2x̄1 ⊕ x7x6x5x4x3 ⊕ x7x6x5x4x2x1 ⊕ x7x6x5x3x2x1 ⊕
x7x4x3x2x1

S
{0,2,4}
7 = x7x6x5x4x3x̄2x̄1 ⊕ x7x6x5x4x3 ⊕ x7x6x5x4x2x1 ⊕ x7x6x5x3x2x1 ⊕
x7x6x4x3x2x1 ⊕ x7x5x4x3x2x1 ⊕ x7 ⊕ x6x5x4x3x2x1 ⊕ x6 ⊕ x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x̄1

15 S
{2}
7 = x̄7x̄6x5x̄4x2x̄1⊕ x̄7x̄6x5x4x̄3x̄2⊕ x̄7x̄6x̄4x3x̄1⊕ x̄7x̄6x̄3x̄2x1⊕ x̄7x6x̄5x̄4x3x̄2x1⊕
x̄7x6x̄5x̄3x̄1 ⊕ x̄7x̄5x̄4x̄2 ⊕ x̄7x̄5x4x̄3x2x̄1 ⊕ x̄7x̄4x̄3x̄2x̄1 ⊕ x7x̄6x̄5x̄4x̄3 ⊕ x7x̄6x̄5x̄2x̄1 ⊕
x̄6x̄5x̄4x̄3x2x1 ⊕ x̄6x̄5x4x3x̄2x̄1 ⊕ x̄6x̄4x̄3x̄2x̄1 ⊕ x̄5x̄4x̄3x̄2x̄1

S
{2,4}
7 = x̄7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x̄7x6x5x4x3x2 ⊕ x̄7 ⊕ x7x6x5x4x̄3x̄2x1 ⊕ x7x6x5x4x1 ⊕
x7x6x5x3x2x1 ⊕x7x6x4x3x2x1 ⊕x7x5x4x3x2x1 ⊕x6x5x4x3x2x̄1 ⊕x6 ⊕x5 ⊕x4 ⊕x3 ⊕
x2 ⊕ x1

S
{0,3,4}
7 = x̄7x6x5 ⊕ x̄7x4x3 ⊕ x̄7x2x1 ⊕ x7x̄6x̄5 ⊕ x7x6x5x4x3x2x1 ⊕ x7x̄4x̄3 ⊕ x7x̄2x̄1 ⊕
x̄6x4x2 ⊕ x̄6x3x̄1 ⊕ x6x̄4x̄2 ⊕ x6x̄3x1 ⊕ x̄5x̄4x̄1 ⊕ x̄5x̄3x2 ⊕ x5x4x1 ⊕ x5x3x̄2

DRAFT PDF

482 T. Hirayama and Y. Nishitani

Table 9: Minimum ESOPs of 7-variable symmetric functions (continued)

S
{0,3,5}
7 = x̄7x̄6x̄5x̄4x3x̄1 ⊕ x̄7x̄6x̄5x̄4x2x̄1 ⊕ x̄7x̄6x̄5x̄3x̄2x̄1 ⊕ x̄7x̄6x̄4x̄3x̄2x̄1 ⊕
x̄7x̄5x̄4x̄3x̄2x̄1 ⊕ x7x̄6x̄5x̄4x̄3x̄2 ⊕ x7x6x5x4x3x2x1 ⊕ x7 ⊕ x̄6x̄5x̄4x̄3x̄2x1 ⊕ x̄6 ⊕ x5 ⊕
x4 ⊕ x3 ⊕ x2 ⊕ x̄1

S
{0,5,6}
7 = x̄7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x̄7x̄6x̄5x4x3x2x1 ⊕ x̄7x6x5x̄4x̄3x2x1 ⊕ x̄7x6x5x4x3x̄2x̄1 ⊕
x7x̄6x5x4x̄3x2x̄1 ⊕ x7x̄6x5x3x1 ⊕ x7x6x̄5x̄4x3x2 ⊕ x7x6x̄5x4x̄2x1 ⊕ x7x6x4x̄3x1 ⊕
x7x6x3x2x̄1 ⊕ x7x5x̄4x3x̄2x1 ⊕ x7x5x4x2 ⊕ x6x5x4x3 ⊕ x6x5x2x1 ⊕ x4x3x2x1

S
{0,1,3,5,6}
7 = x̄7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x̄7x6x5x4x3x2 ⊕ x̄7 ⊕x7x6x5x4x3x1 ⊕x7x6x5x4x2x1 ⊕
x7x6x5x3x2x1 ⊕x7x6x4x3x2x1 ⊕x7x5x4x3x2x1 ⊕x6x5x4x3x2x̄1 ⊕x6 ⊕x5 ⊕x4 ⊕x3 ⊕
x2 ⊕ x̄1

16 S
{0,5}
7 = x̄7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x̄7x6x5x̄4x̄3x2x1 ⊕ x̄7x6x5x4x3x̄2x̄1 ⊕ x̄7x6x4x3x2x1 ⊕
x̄7x5x4x3x2x1⊕x7x̄6x̄5x4x3x2x1⊕x7x̄6x5x̄4x3x̄2x1⊕x7x̄6x5x4x̄3x2x̄1⊕x7x6x̄5x4x1⊕
x7x6x̄5x3x2 ⊕ x7x6x̄4x3x2x̄1 ⊕ x7x6x4x̄3x̄2x1 ⊕ x7x5x4x2 ⊕ x7x5x3x1 ⊕ x6x5x4x3 ⊕
x6x5x2x1

S
{3,4}
7 = x̄7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x̄7x̄6x̄5 ⊕ x̄7x̄4x̄3 ⊕ x̄7x̄2x̄1 ⊕ x7x6x5x4x3x2x1 ⊕ x7x6x5 ⊕
x7x4x3 ⊕x7x2x1 ⊕ x̄6x4x2 ⊕ x̄6x3x1 ⊕x6x̄4x̄2 ⊕x6x̄3x̄1 ⊕ x̄5x4x1 ⊕ x̄5x3x2 ⊕x5x̄4x̄1 ⊕
x5x̄3x̄2

S
{0,2,7}
7 = x̄7x̄6x5x̄4x3x̄1 ⊕ x̄7x̄6x5x̄3x̄2x1 ⊕
x̄7x̄6x̄4x2x̄1 ⊕ x̄7x̄6x4x̄3x̄2 ⊕ x̄7x6x̄5x̄4x3x̄2x1 ⊕ x̄7x6x̄5x̄3x̄1 ⊕ x̄7x6x5x̄4x̄3x̄2x̄1 ⊕
x̄7x̄5x̄4x̄2 ⊕ x̄7x̄5x4x̄3x2x̄1 ⊕ x7x̄6x̄5x̄4x̄3x2x1 ⊕ x7x̄6x̄5x4x3x̄2x̄1 ⊕ x7x̄6x̄4x̄3x̄2x̄1 ⊕
x7x6x5x4x3x2x1 ⊕ x7x̄5x̄4x̄3x̄2x̄1 ⊕ x̄6x̄5x̄4x̄3 ⊕ x̄6x̄5x̄2x̄1

S
{0,3,4,5,6}
7 = x̄7x̄6x5x̄4x2x̄1 ⊕ x̄7x̄6x5x4x̄3x̄2 ⊕ x̄7x̄6x̄4x3x̄1 ⊕ x̄7x̄6x̄3x̄2x1 ⊕
x̄7x6x̄5x̄4x3x̄2x1 ⊕ x̄7x6x̄5x̄3x̄1 ⊕ x̄7x̄5x̄4x̄2 ⊕ x̄7x̄5x4x̄3x2x̄1 ⊕ x7x̄6x̄5x̄4x̄3x2x1 ⊕
x7x̄6x̄5x4x3x̄2x̄1 ⊕ x7x6x5x̄4x̄3x̄2x̄1 ⊕ x7x6x5x4x3x2x1 ⊕ x̄6x̄5x̄4x̄3 ⊕ x̄6x̄5x̄2x̄1 ⊕
x̄4x̄3x̄2x̄1 ⊕ 1

17 S
{0,2,3,6}
7 = x̄7x̄6x̄5x̄4x̄3x̄2x̄1⊕ x̄7x̄6x̄5⊕ x̄7x̄4x̄3⊕ x̄7x̄2x̄1⊕x7x6x5x4x3x2x1⊕x7x6x5⊕
x7x4x3 ⊕ x7x2x1 ⊕ x7 ⊕ x̄6x4x2 ⊕ x̄6x3x̄1 ⊕ x6x̄4x̄2 ⊕ x6x̄3x1 ⊕ x̄5x̄4x̄1 ⊕ x̄5x̄3x2 ⊕
x5x4x1 ⊕ x5x3x̄2

19 S
{3}
7 = x̄7x6x̄5x̄2 ⊕ x̄7x6x̄4x̄3 ⊕ x̄7x̄5x̄4x3x2x̄1 ⊕ x̄7x̄5x4x3x̄2x1 ⊕ x̄7x5x̄4x̄3x2x1 ⊕
x̄7x5x4x̄3x̄2x̄1 ⊕ x7x̄6x5x4x3x2x1 ⊕ x7x̄6x5x2 ⊕ x7x̄6x4x3 ⊕ x7x̄6x1 ⊕ x7x̄5x̄4x̄3x̄2x1 ⊕
x7x̄5x4x̄3x2x̄1⊕x7x5x̄4x3x̄2x̄1⊕ x̄6x5x4⊕ x̄6x5x3x1⊕ x̄6x4x2x1⊕ x̄6x3x2⊕x6x̄5x̄3x̄1⊕
x6x̄4x̄2x̄1

20 S
{0,3}
7 = x̄7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x̄7x6x̄5x̄2 ⊕ x̄7x6x̄4x̄3 ⊕ x̄7x̄5x̄4x3x2x̄1 ⊕ x̄7x̄5x4x3x̄2x1 ⊕
x̄7x5x̄4x̄3x2x1 ⊕ x̄7x5x4x̄3x̄2x̄1 ⊕ x7x̄6x5x4x3x2x1 ⊕ x7x̄6x5x2 ⊕ x7x̄6x4x3 ⊕ x7x̄6x1 ⊕
x7x̄5x̄4x̄3x̄2x1 ⊕ x7x̄5x4x̄3x2x̄1 ⊕ x7x5x̄4x3x̄2x̄1 ⊕ x̄6x5x4 ⊕ x̄6x5x3x1 ⊕ x̄6x4x2x1 ⊕
x̄6x3x2 ⊕ x6x̄5x̄3x̄1 ⊕ x6x̄4x̄2x̄1

S
{1,3}
7 = x̄7x6x5x̄4x̄3x2x1⊕x̄7x6x5x4x3x̄2x̄1⊕x̄7x̄5x̄4x3x2x1⊕x̄7x̄5x̄3x2x̄1⊕x̄7x5x̄4x̄3⊕
x̄7x̄2x̄1 ⊕ x7x̄6x5x4x2 ⊕ x7x̄6x5x3x1 ⊕ x7x̄6x4x1 ⊕ x7x̄6x3x2 ⊕ x7x6x̄5x̄4x3x2x̄1 ⊕
x7x6x̄5x4x̄3x̄2x1 ⊕ x7x̄5x̄4x1 ⊕ x7x5x̄4x̄3x̄2x̄1 ⊕ x̄6x5x4x3 ⊕ x̄6x5x2x1 ⊕ x̄6x4x3x2x1 ⊕
x̄6 ⊕ x̄5x̄4 ⊕ x̄5x̄3x̄2

S
{0,1,3}
7 = x̄7x6x̄5x̄4x̄3x̄2x̄1 ⊕ x̄7x6x5x̄4x3x̄2x1 ⊕ x̄7x6x5x4x̄3x2x̄1 ⊕ x̄7x̄5x̄4x3x2x̄1 ⊕
x̄7x̄5x4x̄3x̄2x1⊕ x̄7x̄4x̄2⊕ x̄7x̄3x̄1⊕x7x̄6x5x4x1⊕x7x̄6x5x3x2⊕x7x̄6x4x3⊕x7x̄6x2x1⊕
x7x6x̄5x̄4x̄3x2x1 ⊕ x7x6x̄5x4x3x̄2x̄1 ⊕ x7x5x̄4x̄3x̄2x̄1 ⊕ x̄6x5x4x2 ⊕ x̄6x5x3x1 ⊕
x̄6x4x3x2x1 ⊕ x̄6 ⊕ x̄5x̄4x̄3 ⊕ x̄5x̄2x̄1

S
{0,1,5}
7 = x̄7x̄6x̄5x̄4 ⊕ x̄7x̄6x̄3x̄2 ⊕ x̄7x̄6 ⊕ x̄7x6x̄1 ⊕ x̄7x̄5x̄3x̄1 ⊕ x̄7x5x2 ⊕ x̄7x̄4x̄2x̄1 ⊕
x̄7x4x3 ⊕ x7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x7x6x5x4 ⊕ x7x6x3x2 ⊕ x7x5x3x1 ⊕ x7x4x2x1 ⊕
x̄6x̄5x4x̄3x2x1 ⊕ x̄6x5x̄4x3x̄2x1 ⊕ x̄6x5x4x3x2x̄1 ⊕ x6x̄5x̄4x3x2x̄1 ⊕ x6x̄5x4x3x̄2x1 ⊕
x6x5x̄4x̄3x2x1 ⊕ x6x5x4x̄3x̄2x̄1

S
{0,3,7}
7 = x̄7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x̄7x6x̄5x̄2 ⊕ x̄7x6x̄4x̄3 ⊕ x̄7x̄5x̄4x3x2x̄1 ⊕ x̄7x̄5x4x3x̄2x1 ⊕
x̄7x5x̄4x̄3x2x1 ⊕ x̄7x5x4x̄3x̄2x̄1 ⊕ x7x̄6x5x2 ⊕ x7x̄6x4x3 ⊕ x7x̄6x1 ⊕ x7x̄5x̄4x̄3x̄2x1 ⊕
x7x̄5x4x̄3x2x̄1 ⊕ x7x5x̄4x3x̄2x̄1 ⊕ x7x5x4x3x2x1 ⊕ x̄6x5x4 ⊕ x̄6x5x3x1 ⊕ x̄6x4x2x1 ⊕
x̄6x3x2 ⊕ x6x̄5x̄3x̄1 ⊕ x6x̄4x̄2x̄1

DRAFT PDF

EXACT MINIMIZATION OF AND-EXOR EXPRESSIONS 483

Table 9: Minimum ESOPs of 7-variable symmetric functions (continued)

S
{0,1,2,3,5}
7 = x̄7x̄6x̄5x̄4x3x2x1⊕x̄7x̄6x5x4x̄3x̄2x1⊕x̄7x6x̄5x4x̄3x2x̄1⊕x̄7x6x5x̄4x3x̄2x̄1⊕
x̄7x6x5x4x3x2x1⊕x̄7⊕x7x̄6x̄5x̄4⊕x7x̄6x̄5x̄2x̄1⊕x7x̄6x̄4x̄3x̄1⊕x7x̄6x̄3x̄2⊕x7x̄5x̄4x̄3x̄2⊕
x7x̄5x̄3x̄1 ⊕ x7x̄4x̄2x̄1 ⊕ x̄6x5x4x3x2x̄1 ⊕ x6x̄5x4x3x̄2x1 ⊕ x6x5x̄4x̄3x2x1 ⊕ x6x5x3 ⊕
x6x4x2 ⊕ x5x4x1 ⊕ x3x2x1

21 S
{0,2,6}
7 = x̄7x6x5x3 ⊕ x̄7x6x4x2 ⊕ x̄7x6 ⊕ x̄7x̄5x̄4 ⊕ x̄7x̄5x̄2x̄1 ⊕ x̄7x̄4x̄3x̄1 ⊕
x̄7x̄3x̄2 ⊕x7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕x7x̄6x̄5x̄3 ⊕x7x̄6x̄4x̄2 ⊕x7x̄6x1 ⊕x7x5x2x1 ⊕x7x4x3x1 ⊕
x̄6x̄5x̄4x3x2x1 ⊕ x̄6x̄5x4x̄3x2x̄1 ⊕ x̄6x5x̄4x3x̄2x̄1 ⊕ x̄6x5x4x̄3x̄2x1 ⊕ x6x̄5x4x3x̄2x1 ⊕
x6x5x̄4x̄3x2x1 ⊕ x6x5x4x3x2x̄1 ⊕ x̄5x̄4x̄3x̄2x̄1

S
{1,2,4}
7 = x̄7x̄6x̄5x̄4x̄3x2 ⊕ x̄7x̄6x̄5x̄4x̄3x1 ⊕ x̄7x̄6x̄5x̄4x̄2x̄1 ⊕ x̄7x̄6x̄5x̄3x̄2x̄1 ⊕
x̄7x̄6x̄4x̄3x̄2x̄1 ⊕ x̄7x̄5x̄4x̄3x̄2x̄1 ⊕ x7x6x5x4x3x̄2x̄1 ⊕ x7x6x5x4x3 ⊕ x7x6x5x4x2x1 ⊕
x7x6x5x3x2x1 ⊕ x7x6x4x3x2x1 ⊕ x7x5x4x3x2x1 ⊕ x7 ⊕ x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x̄6 ⊕
x6x5x4x3x2x1 ⊕ x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1

S
{1,2,5}
7 = x̄7x̄6x5x4x3x2x1 ⊕ x̄7x6x5x4x̄3x2 ⊕ x̄7x6x5x3x̄2x1 ⊕ x̄7x̄4x̄3 ⊕ x̄7x2x̄1 ⊕
x7x6x5x̄4x3x1 ⊕ x7x6x5x4x2x̄1 ⊕ x7x6x4x3x2x1 ⊕ x7x6 ⊕ x7x5 ⊕ x7x4x3 ⊕ x7x̄2x1 ⊕
x̄6x̄5x̄3x̄2⊕x̄6x5x̄4x̄3x2⊕x̄6x5x3x̄2x̄1⊕x̄6x4x̄1⊕x6x̄5x3x2⊕x6x̄4x1⊕x̄5x̄4x̄2⊕x̄5x̄3x̄1⊕
x5x̄4x3x2x̄1

S
{1,2,6}
7 = x̄7x̄6x̄4x̄1⊕x̄7x̄6x̄3x̄2⊕x̄7x6x̄5x̄4x3x̄2x1⊕x̄7x6x̄5x4x̄3x2x̄1⊕x̄7x6x̄4x̄3x̄2x̄1⊕
x̄7x̄5x̄4x̄2 ⊕ x̄7x̄5x̄3x̄1 ⊕ x̄7x5x4x3x2x1 ⊕ x7x̄6x̄5x̄4x̄3x2x1 ⊕ x7x̄6x̄5x4x3x̄2x̄1 ⊕
x7x6x̄5x4x3x2x1 ⊕ x7x6x5x4x1 ⊕ x7x6x5x3x2 ⊕ x7x̄5x̄4x̄3x̄2x̄1 ⊕ x7x5x̄4x3x2x̄1 ⊕
x7x5x4x̄3x̄2x1 ⊕ x̄6x5x4x2 ⊕ x̄6x5x3x1 ⊕ x̄6x5 ⊕ x̄6x̄4x̄3 ⊕ x̄6x̄2x̄1

S
{0,1,2,6}
7 = x̄7x̄6x̄4x̄1 ⊕ x̄7x̄6x̄3x̄2 ⊕ x̄7x6x̄5x̄4x̄2 ⊕ x̄7x6x̄5x̄3x̄1 ⊕ x̄7x6x4x3x2x1 ⊕
x̄7x̄5x̄4x3x̄2x1 ⊕ x̄7x̄5x4x̄3x2x̄1 ⊕ x̄7x5x̄4x̄3x̄2x̄1 ⊕ x7x̄6x5 ⊕ x7x̄6x̄4x̄3 ⊕ x7x̄6x̄2x̄1 ⊕
x7x6x5x̄4x3x̄2x1 ⊕ x7x6x5x4x̄3x2x̄1 ⊕ x7x5x4x2 ⊕ x7x5x3x1 ⊕ x̄6x̄5x̄4x̄3x2x1 ⊕
x̄6x̄5x4x3x̄2x̄1 ⊕ x̄6x5x̄4x3x2x̄1 ⊕ x̄6x5x4x̄3x̄2x1 ⊕ x6x̄5x4x3x2x1 ⊕ x̄5x̄4x̄3x̄2x̄1

S
{1,2,3,5}
7 = x̄7x̄6x̄5x̄4x̄3x̄2x̄1⊕ x̄7x̄6x̄5x̄4x3x2x1⊕ x̄7x̄6x5x4x̄3x̄2x1⊕ x̄7x6x̄5x4x̄3x2x̄1⊕
x̄7x6x5x̄4x3x̄2x̄1 ⊕ x̄7x6x5x4x3x2x1 ⊕ x̄7 ⊕ x7x̄6x̄5x̄4 ⊕ x7x̄6x̄5x̄2x̄1 ⊕ x7x̄6x̄4x̄3x̄1 ⊕
x7x̄6x̄3x̄2 ⊕ x7x̄5x̄4x̄3x̄2 ⊕ x7x̄5x̄3x̄1 ⊕ x7x̄4x̄2x̄1 ⊕ x̄6x5x4x3x2x̄1 ⊕ x6x̄5x4x3x̄2x1 ⊕
x6x5x̄4x̄3x2x1 ⊕ x6x5x3 ⊕ x6x4x2 ⊕ x5x4x1 ⊕ x3x2x1

S
{0,1,2,3,6}
7 = x̄7x̄6x̄5x4x̄3x2x1⊕x̄7x̄6x5x̄4x3x̄2x1⊕x̄7x6x̄5x̄4x3x2x̄1⊕x̄7x6x5x4x̄3x̄2x̄1⊕
x̄7x6x5x2x1 ⊕ x̄7x6x4x3x1 ⊕ x̄7x5x4x3x2 ⊕ x7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x7x̄6x̄5x̄4 ⊕ x7x̄6x̄3x̄2 ⊕
x7x̄6x̄1⊕x7x̄5x̄3x̄1⊕x7x̄5x̄2⊕x7x̄4x̄3⊕x7x̄4x̄2x̄1⊕x6x5x4x3x2x1⊕x6x5x4⊕x6x3x2⊕
x5x3x1 ⊕ x4x2x1 ⊕ 1

S
{0,1,2,4,7}
7 = x̄7x̄6x̄5x̄4x̄3x2 ⊕ x̄7x̄6x̄5x̄4x̄3x1 ⊕ x̄7x̄6x̄5x̄4x̄2x̄1 ⊕ x̄7x̄6x̄5x̄3x̄2x̄1 ⊕
x̄7x6x5x̄4x̄3x̄2x̄1 ⊕ x̄7x6x5x4x3x2x1 ⊕ x̄7x̄4x̄3x̄2x̄1 ⊕ x7x6x5x4x3x̄2x̄1 ⊕ x7x6x5x4x3 ⊕
x7x6x5x4x2x1⊕x7x6x5x3x2x1⊕x7x6x4x3x2x1⊕x7x5x4x3x2x1⊕x7⊕x̄6x̄5x̄4x̄3x̄2x̄1⊕
x̄6 ⊕ x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1

S
{0,1,3,4,7}
7 = x̄7x̄6x̄5x̄4x̄3x̄2 ⊕ x̄7x̄6x̄5x4x̄3x2x̄1 ⊕ x̄7x6x5x̄4x̄3x̄2x̄1 ⊕ x̄7x6 ⊕ x̄7x5 ⊕
x̄7x̄4x3⊕ x̄7x4x̄3x̄2x̄1⊕x7x̄6x̄5x̄4x3x̄2x̄1⊕x7x̄6x̄5x̄3x̄1⊕x7x4x̄3⊕x7x3x̄2x̄1⊕x7x2x1⊕
x̄6x̄5x3x1 ⊕ x̄6x̄4x1 ⊕ x̄6x2 ⊕x6x̄5x̄4x2x̄1 ⊕x6x5x4x̄1 ⊕x6x5x̄3 ⊕ x̄5x̄4x̄2x1 ⊕x5x4x2 ⊕
x3x2x1

S
{0,1,4,5,6}
7 = x̄7x6x̄5x̄4x̄1⊕x̄7x6x̄5x4x̄2x1⊕x̄7x6x5x4x̄3x2x1⊕x̄7x6x5x̄3x1⊕x̄7x6x̄3x̄2⊕
x̄7x̄5x̄2⊕ x̄7x̄4x̄3⊕x7x̄6x5x2⊕x7x̄6x4x3⊕x7x̄6x1⊕x7x6x̄5x̄4x̄3x̄2⊕x7x6x̄5x4x̄3x2x̄1⊕
x7x6x5x̄4x3x̄2x̄1⊕x7x5x4x3x2x1⊕ x̄6x5x4⊕ x̄6x5x3x1⊕ x̄6x4x2x1⊕ x̄6x3x2⊕ x̄5x̄3x̄1⊕
x̄4x̄2x̄1 ⊕ 1

S
{1,2,3,5,6}
7 = x̄7x̄6x̄5x̄3x̄2x̄1 ⊕ x̄7x̄6x5x̄3x2x1 ⊕ x̄7x̄6x4x̄2 ⊕ x̄7x6x̄5x3x̄2x1 ⊕
x̄7x6x5x3x2x̄1⊕x̄7x̄5x4x̄3⊕x̄7x4x̄1⊕x7x̄6x̄5x3x2x1⊕x7x̄6x5x3x̄2x̄1⊕x7x6x̄5x̄3x2x̄1⊕
x7x6x5x4x3x2x1 ⊕ x7x6x5x̄3x̄2x1 ⊕ x7x6x̄4x2 ⊕ x7x5x̄4x3 ⊕ x̄6x̄5x4 ⊕ x̄6x4x̄3x̄1 ⊕
x6x̄4x3x1 ⊕ x̄5x4x̄2x̄1 ⊕ x5x̄4x2x1 ⊕ x4x̄3x̄2 ⊕ 1

DRAFT PDF

484 T. Hirayama and Y. Nishitani

Table 9: Minimum ESOPs of 7-variable symmetric functions (continued)

22 S
{1,4}
7 = x̄7x̄6x̄5x̄4x̄3x2x1 ⊕ x̄7x̄6x̄5x̄4x̄3 ⊕ x̄7x6x5x̄2x̄1 ⊕ x̄7x6x4x2 ⊕ x̄7x6x3x1 ⊕
x̄7x5x4x1 ⊕ x̄7x5x3x2 ⊕ x̄7x4x3x̄2x̄1 ⊕ x7x̄6x̄5 ⊕ x7x̄6x̄4x̄2x1 ⊕ x7x̄6x̄3x2x̄1 ⊕
x7x6x5x4x3x̄2x̄1⊕x7x̄5x̄4x2x̄1⊕x7x̄5x̄3x̄2x1⊕x7x̄4x̄3⊕x̄6x̄5x4x3x2x1⊕x̄6x5x̄4x3x̄1⊕
x̄6x5x4x̄3x̄2 ⊕ x6x̄5x̄4x3x̄2 ⊕ x6x̄5x4x̄3x̄1 ⊕ x6x5x̄4x̄3x2x1 ⊕ x̄2x̄1

S
{0,1,4}
7 = x̄7x̄6x̄5x̄4x̄3x2 ⊕ x̄7x̄6x̄5x̄4x̄3x1 ⊕ x̄7x6x5x̄2x̄1 ⊕ x̄7x6x4x2 ⊕ x̄7x6x3x1 ⊕
x̄7x5x4x1 ⊕ x̄7x5x3x2 ⊕ x̄7x4x3x̄2x̄1 ⊕ x7x̄6x̄5 ⊕ x7x̄6x̄4x̄2x1 ⊕ x7x̄6x̄3x2x̄1 ⊕
x7x6x5x4x3x̄2x̄1⊕x7x̄5x̄4x2x̄1⊕x7x̄5x̄3x̄2x1⊕x7x̄4x̄3⊕x̄6x̄5x4x3x2x1⊕x̄6x5x̄4x3x̄1⊕
x̄6x5x4x̄3x̄2 ⊕ x6x̄5x̄4x3x̄2 ⊕ x6x̄5x4x̄3x̄1 ⊕ x6x5x̄4x̄3x2x1 ⊕ x̄2x̄1

S
{1,3,4}
7 = x̄7x̄6x̄5x̄4x̄3x2x̄1 ⊕ x̄7x̄6x̄5x4x̄3x̄2x1 ⊕ x̄7x6x5x̄4x̄3x̄2x̄1 ⊕ x̄7x6 ⊕ x̄7x5 ⊕
x̄7x̄4x3 ⊕ x̄7x4x̄3x̄2x̄1 ⊕ x7x̄6x̄5x̄4x3x̄2x̄1 ⊕ x7x̄6x̄5x̄3x̄2 ⊕ x7x6x5x4x3x2x1 ⊕ x7x4x̄3 ⊕
x7x3x̄2x̄1 ⊕x7x2x1 ⊕ x̄6x̄5x3x2 ⊕ x̄6x̄4x2 ⊕ x̄6x1 ⊕x6x̄5x̄4x̄2x1 ⊕x6x5x4x̄2 ⊕x6x5x̄3 ⊕
x̄5x̄4x2x̄1 ⊕ x5x4x1 ⊕ x3x2x1

S
{0,1,2,5}
7 = x̄7x̄6x̄5x̄4x̄3x̄2x̄1 ⊕ x̄7x̄6x5x4x3x2x1 ⊕ x̄7x6x5x4x̄3x2 ⊕ x̄7x6x5x3x̄2x1 ⊕
x̄7x̄4x̄3 ⊕ x̄7x2x̄1 ⊕ x7x6x5x̄4x3x1 ⊕ x7x6x5x4x2x̄1 ⊕ x7x6x4x3x2x1 ⊕ x7x6 ⊕ x7x5 ⊕
x7x4x3⊕x7x̄2x1⊕x̄6x̄5x̄3x̄2⊕x̄6x5x̄4x̄3x2⊕x̄6x5x3x̄2x̄1⊕x̄6x4x̄1⊕x6x̄5x3x2⊕x6x̄4x1⊕
x̄5x̄4x̄2 ⊕ x̄5x̄3x̄1 ⊕ x5x̄4x3x2x̄1

S
{0,1,3,4}
7 = x̄7x̄6x̄5x̄4x̄3x̄2⊕x̄7x̄6x̄5x4x̄3x2x̄1⊕x̄7x6x5x̄4x̄3x̄2x̄1⊕x̄7x6⊕x̄7x5⊕x̄7x̄4x3⊕
x̄7x4x̄3x̄2x̄1⊕x7x̄6x̄5x̄4x3x̄2x̄1⊕x7x̄6x̄5x̄3x̄1⊕x7x6x5x4x3x2x1⊕x7x4x̄3⊕x7x3x̄2x̄1⊕
x7x2x1 ⊕ x̄6x̄5x3x1 ⊕ x̄6x̄4x1 ⊕ x̄6x2 ⊕x6x̄5x̄4x2x̄1 ⊕x6x5x4x̄1 ⊕x6x5x̄3 ⊕ x̄5x̄4x̄2x1 ⊕
x5x4x2 ⊕ x3x2x1

S
{0,2,3,4,7}
7 = x̄7x̄6x̄5x̄4x̄1 ⊕ x̄7x̄6x̄5x̄3x̄2 ⊕ x̄7x̄6x̄4x3x2x̄1 ⊕ x̄7x̄6x4x̄3x̄2x1 ⊕
x̄7x6x̄5x̄4x̄3x̄2x̄1 ⊕ x̄7x6x5x̄4x̄3x2x1 ⊕ x̄7x6x5x4x3x̄2x̄1 ⊕
x̄7x6x4x3x2x1 ⊕ x7x̄6x̄4x̄3x̄2x̄1 ⊕ x7x6x̄5x̄4x3x̄2x1 ⊕ x7x6x̄5x4x̄3x2x̄1 ⊕ x7x6x4x2 ⊕
x7x6x3x1 ⊕ x7x̄5x4x3x2x1 ⊕ x7x5x4x1 ⊕ x7x5x3x2 ⊕ x̄6x5x̄4x̄2 ⊕ x̄6x5x̄3x̄1 ⊕ x̄6x5 ⊕
x5x4x3 ⊕ x5x2x1 ⊕ 1

23 S
{2,5}
7 = x̄7x̄6x̄5x4x̄1 ⊕ x̄7x̄6x5x̄4x̄3 ⊕ x̄7x6x̄5x̄3x̄2 ⊕ x̄7x6x5x4x̄3x2x̄1 ⊕
x̄7x6x5x̄2x̄1 ⊕ x̄7x6x4x̄3x̄2x1 ⊕ x̄7x5x3x2x1 ⊕ x̄7x̄4x3x̄2x̄1 ⊕ x7x̄6x̄5x1 ⊕ x7x̄6x4x3x2 ⊕
x7x6x5x̄4x3x̄2x1 ⊕ x7x6x3x2x̄1 ⊕ x7x̄5x̄4x2 ⊕ x7x5x4x̄3x̄2x̄1 ⊕ x7x4x3x1 ⊕ x7x̄3x2x1 ⊕
x̄6x̄5x4x̄2 ⊕ x̄6x̄5x3 ⊕ x̄6x5x̄3x̄2x̄1 ⊕ x̄6x̄4x2x1 ⊕ x6x̄5x̄4x̄3x̄1 ⊕ x6x5x4 ⊕ x̄5x4x3x2x1

S
{0,2,5}
7 = x̄7x̄6x5x4 ⊕ x̄7x̄6x3x2 ⊕ x̄7x6x̄5x̄3x̄1 ⊕ x̄7x6x̄4x̄2x̄1 ⊕ x̄7x̄5x4x3x̄2x1 ⊕
x̄7x5x̄4x̄3x2x1 ⊕ x̄7 ⊕ x7x̄6x5x3x1 ⊕ x7x̄6x4x2x1 ⊕ x7x6x̄5x̄2 ⊕ x7x6x5x4x3x2x1 ⊕
x7x6x̄4x̄3 ⊕ x7x̄5x̄4x3x2x̄1 ⊕ x7x5x4x̄3x̄2x̄1 ⊕ x̄6x̄5x̄4x̄3x̄2 ⊕ x̄6x5x2x̄1 ⊕ x̄6x4x3x̄1 ⊕
x6x̄5x̄4x1 ⊕ x6x5x4x3x2 ⊕ x6x̄3x̄2x1 ⊕ x̄5x4x̄3x2 ⊕ x5x̄4x3x̄2 ⊕ x̄1

S
{0,3,6}
7 = x̄7x̄6x5x4x3x2x1 ⊕ x̄7x̄6x̄4x3x̄2x1 ⊕ x̄7x̄6x4x̄3x2x̄1 ⊕ x̄7x6x̄5x4x1 ⊕
x̄7x6x̄5x3x2 ⊕ x̄7x̄5x̄4x̄3x̄2x̄1 ⊕ x̄7x5x̄4x̄3 ⊕ x̄7x5x̄2x̄1 ⊕ x7x̄6x̄5x4x3 ⊕ x7x̄6x̄5x2x1 ⊕
x7x6x5x̄4x̄2⊕x7x6x5x̄3x̄1⊕x7x6⊕x7x̄4x3x2x̄1⊕x7x4x̄3x̄2x1⊕ x̄6x5x̄4x̄1⊕ x̄6x5x̄3x̄2⊕
x6x̄5x̄4x̄3x̄2x̄1 ⊕ x6x̄4x̄3x2x1 ⊕ x6x4x3x̄2x̄1 ⊕ x̄5x4x2 ⊕ x̄5x3x1 ⊕ x5x4x3x2x1

24 S
{0,2,3,5,6}
7 = x̄7x̄6x̄5x̄3x̄2x1 ⊕ x̄7x̄6x5x̄4x3 ⊕ x̄7x̄6x5x4x3x2x1 ⊕ x̄7x6x̄5x̄4x2 ⊕
x̄7x6x4x3x2x1 ⊕ x̄7x6x3x̄2x̄1 ⊕ x̄7x5x̄3x2x̄1 ⊕ x̄7x̄4x1 ⊕ x7x̄6x5x̄4x2x1 ⊕ x7x̄6x4x̄3x̄1 ⊕
x7x̄6⊕x7x6x̄5x̄4x3x1⊕x7x6x̄5⊕x7x6x5x4x̄3x̄2⊕x7x̄5x4x̄2x̄1⊕x7x̄4x3x2⊕x̄6x̄5x3x2x̄1⊕
x̄6x4x̄2 ⊕ x6x5x4x̄1 ⊕ x6x̄4x̄3x̄2x̄1 ⊕ x6x̄3x2x1 ⊕ x̄5x̄4x̄3x̄2x̄1 ⊕ x̄5x4x̄3 ⊕ x5x3x̄2x1

References

1. T. Hirayama, G. Koda, Y. Nishitani, and K. Shimizu, Easily testable realization based
on single-rail-input OR-AND-EXOR expressions, IEICE Trans. Inf. & Syst., E82-D
(1999) 1278–1286.

2. U. Kalay, D. V. Hall, and M. A. Perkowski, A minimal universal test set for self-test
of EXOR-sum-of-products circuits, IEEE Trans. Comput., 49 (2000) 267–276.

3. S. M. Reddy, Easily testable realization for logic functions, IEEE Trans. Comput.,

DRAFT PDF

EXACT MINIMIZATION OF AND-EXOR EXPRESSIONS 485

C-21 (1972) 1183-1188.
4. T. Sasao, Easily testable realizations for generalized Reed-Muller expansions, IEEE

Trans. Comput., 46 (1997) 709–716.
5. S. Chattopadhyay, S. Roy, and P. P. Chaudhuri, KGPMIN: an efficient multilevel

multioutput AND-OR-XOR minimizer, IEEE Trans. Comput.-Aided Des. Integrated
Circuits & Systems, 16 (1997) 257–265.

6. D. Debnath and T. Sasao, Minimization of AND-OR-EXOR three-level networks with
AND gate sharing, IEICE Trans. Inf. & Syst., E80-D (1997) 1001–1008.

7. R. Ishikawa, T. Hirayama, G. Koda, K. Shimizu, EXOR decomposition with com-
mon variables and its application to multiple-output networks, Journal of Circuits,
Systems, and Computers, 9 (1999) 83–97.

8. F. Luccio and L. Pagli, On a new boolean function with applications, IEEE Trans.
Comput., 48 (1999) 296–310.

9. T. Sasao and P. Besslich, On the complexity of mod-2 sum PLA’s, IEEE Trans.
Comput., 39 (1990) 262–266.

10. G. Yang, W. N. N. Hung, X. Song, and M. Perkowski, Majority-based reversible logic
gates, Theoretical Computer Science, 334 (2005) 259–274.

11. K. Iwama, Y. Kambayashi, and S. Yamashita, Transformation rules for designing
CNOT-based quantum circuits, Proc. 39th ACM/IEEE Design Automation Confer-
ence, June 2002, pp. 419–424.

12. T. Hirayama, K. Nagasawa, Y. Nishitani, and K. Shimizu, Double fixed-polarity Reed-
Muller expressions: a new class of AND-EXOR expressions for compact and testable
realization, Trans. IPS Japan, 42 (2001) 983–991.

13. T. Sasao, Representations of logic functions using EXOR operators, Representations
of Discrete Functions, eds. T. Sasao and M. Fujita (Kluwer Academic Publishers,
1996), pp. 29–54.

14. D. Brand and T. Sasao, Minimization of AND-EXOR expressions using rewrite rules,
IEEE Trans. Comput., 42 (1993) 568–576.

15. H. Fleisher, M. Tavel, and J. Yeager, Computer algorithm for minimizing Reed-Muller
canonical forms, IEEE Trans. Comput., C-36 (1987) 247–250.

16. M. Helliwell and M. A. Perkowski, A fast algorithm to minimize multi-output mixed-
polarity generalized Reed-Muller forms, Proc. 25th ACM/IEEE Design Automation
Conference, June 1988, pp. 427–432.

17. Y. Ye and K. Roy, An XOR-based decomposition diagram and its application in
synthesis of AND/XOR networks, IEICE Trans. Fundamentals, E80-A (1997) 1742–
1748.

18. T. Sasao, EXMIN2: A simplification algorithm for exclusive-OR sum-of-products
expressions for multiple-valued-input two-valued-output functions, IEEE Trans.
Comput.-Aided Des. Integrated Circuits & Systems, 12 (1993) 621–632.

19. N. Song and M. A. Perkowski, Minimization of exclusive sum-of-products expressions
for multiple-valued input, incompletely specified functions, IEEE Trans. Comput.-
Aided Des. Integrated Circuits & Systems, 15 (1996) 385–395.

20. A. Mishchenko and M. Perkowski, Fast heuristic minimization of exclusive-sums-of-
products, Proc. 5th Int. Workshop on Reed-Muller, Starkville, Mississippi, USA, Au-
gust 2001, pp. 242-250.

21. M. A. Perkowski and M. Chrzanowska-Jeske, An exact algorithm to minimize mixed-
radix exclusive sums of products for incompletely specified Boolean functions, Proc.
Int. Symp. Circuits & Systems, USA, May 1990, pp. 1652–1655.

22. T. Sasao, An exact minimization of AND-EXOR expressions using BDD’s, Proc. IFIP
WG10.5 Reed-Muller’93, Germany, 1993, pp. 91–98.

DRAFT PDF

486 T. Hirayama and Y. Nishitani

23. S. Stergiou and G. Papakonstantinou, Exact minimization of ESOP expressions with
less than eight product terms, Journal of Circuits, Systems, and Computers, 13 (2004)
1–15.

24. T. Hirayama, Y. Nishitani, and T. Sato, A faster algorithm of minimizing AND-EXOR
expressions, IEICE Trans. Fundamentals, E85-A (2002) 2708–2714.

25. Y. Nishitani and K. Shimizu, Lower bounds on size of periodic functions in exclusive-
OR sum-of-products expressions, IEICE Trans. Fundamentals, E77-A (1994) 475–
482.

26. T. Hirayama and Y. Nishitani, A simplification algorithm of AND-EXOR expressions
guaranteeing minimality for some subclass of logic functions, IEICE Trans. Inf. &
Syst. D-I, J78-D-I (1995) 409–415.

27. N. Koda and T. Sasao, Four variable AND-EXOR minimization expressions and their
properties, IEICE Trans. Inf. & Syst. D-I, J74-D-I (1991) 765–773.

28. N. Koda and T. Sasao, An upper bound on the number of products in minimum
ESOPs, Proc. IFIP Workshop Reed-Muller’95, Japan, August 1995, pp. 94–101.

29. N. Koda and T. Sasao, A simplification method for AND-EXOR expressions for
multiple-output functions, IEICE Trans. Inf. & Syst. D-I, J79-D-I (1996) 43–52.

30. T. Hirayama and Y. Nishitani. A simplification algorithm of AND-EXOR expressions
for multiple-output functions, Proc. IFIP Workshop Reed-Muller’95, Japan, August
1995, pp. 88–93.

31. K. McElvain, IWLS’93 Benchmark Set: Version 4.0, Distributed as part of the MCNC
International Workshop on Logic Synthesis ’93 benchmark distribution, May 1993.

32. T. Sasao, Multiple-valued logic and optimization of programmable logic arrays, IEEE
Trans. Comput., 21 (1988) 71–80.

33. S. Even, I. Kohavi, and A. Paz, On minimal modulo-2 sums of products for switching
functions, IEEE Trans. Electron. Comput., EC-16 (1967) 671–674.

34. D. Voudouris, M. Sampson, and G. Papakonstantinou, Exact ESCT minimization for
functions of up to six input variables, Integr. VLSI J., 41 (2008) 87–105.

35. T. Hirayama and Y. Nishitani, Efficient search methods for obtaining exact minimum
AND-EXOR expressions, Proc. 3rd IEEE Int. Workshop on Electronic Design, Test
and Applications, Malaysia, January 2006, pp. 137–142.

36. G. Bioul, M. Davio, and J. P. Deschamps, Minimization of ring-sum expansions of
Boolean functions, Philips Res. Repts., 28 (1973) 17-36.

37. A. Gaidukov, Algorithm to derive minimum ESOP for 6-variable function, Proc. 5th
Int. Workshop on Boolean Problems, September 2002, pp. 141–148.

38. S. Stergiou, D. Voudouris, and G. Papakonstantinou, Multiple-value exclusive-or sum-
of-products minimization algorithms, IEICE Trans. Fundamentals, E87-A (2004)
1226–1234.

39. S. Stergiou, K. Daskalakis, and G. Papakonstantinou, A fast and efficient heuristic
ESOP minimization algorithm, Proc. 14th ACM Great Lakes symposium on VLSI,
April 2004, pp. 78–81.

