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SUMMARY This paper deals with minimization of ESOPs
(exclusive-or sum-of-products) which represent symmetric func-
tions. We propose an efficient simplification algorithm for sym-
metric functions, which guarantees the minimality for some sub-
class of symmetric functions, and present the minimum ESOPs
for all 6-variable symmetric functions.
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1. Introduction

AND-EXOR expressions usually require fewer prod-
ucts than AND-OR ones[8]. An AND-EXOR ex-
pression such that arbitrary product terms are com-
bined with EXOR operators is called an exclusive-or
sum-of-products expression (ESOP). Some minimiza-
tion and simplification algorithms of ESOPs have been
proposed [6],[7],[9],[10]. However, there are no effi-
cient algorithms to minimize ESOPs for functions which
have six or more variables. The simplification algo-
rithms are more practical than minimization ones, but
their results are not always minimum.

Since symmetric functions are basic arithmetic
functions, their minimization and simplification have
been also studied [1],[4],[6],[8]. Koda and Sasao gave
minimum ESOPs for some symmetric functions[4], but
for some 6-variable symmetric functions, their minimum
ESOPs remain unknown.

In this paper, we propose an efficient algorithm to
simplify ESOPs for symmetric functions, which guar-
antees the minimality for some subclass of symmetric
functions, and we present the minimum ESOPs of all
6-variable symmetric functions, which are obtained by
this algorithm.

2. Definitions and Basic Properties

The definitions and properties used throughout this pa-
per are given in this section.

Definition 1: Product terms combined with Exclusive-
OR operators form an Exclusive-or Sum-Of-Products
expression (ESOP). The number of product terms in an
ESOP F is denoted by 7(F'). Among all ESOPs that
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represent a function f, those with a minimum number
of product terms are called minimum ESOPs of f. The
number of product terms in a minimum ESOP of f is
denoted by 7(f).

Definition 2: Let f be an n-variable function with the
input variables X = (21,z2,--,2,). For a permu-
tation 7 on X, n(f) denotes the function given by
flr(zy),m(xa), -+, 7(xy)). If w(f) = f for any permu-
tation m on X, f is said to be symmetric. An n-variable
function g is P-equivalent to f if there exists a permu-
tation 7 such that 7n(f) = g. The class of all functions
P-equivalent to f is called P-equivalence class of f.

From the definitions, the following properties hold.
Property 1: Let f and g be functions with the in-
put variables X, and 7 a permutation on X. Then
m(n(f)) = 7(f) and 7(f & g) = 7(f) ® =(g) hold.

It is obvious that the above equations hold since =
permutes only the variables of the function.

Property 2: Let f be a symmetric function and g be a
function. Then, for any P-equivalent function w(g) of
g 7(f@g)=7(fem(9))

Proof: From Property 1 and the definition of sym-
metric functions, we have 7(f & g) = 7(x(f B g)) =
T(n(f) & n(g)) = 7(f & 7(g))- o
Definition 3: For a function f and a variable x, the
subfunctions of f with x = 0 and z = 1 are de-
noted by f..(0} and f;.{1}, respectively. f;.(01}, which
is also called the subfunction of f, is defined to be
fe:qoy @ faq1y and fr.q) denotes the logical zero func-
tion 0. If the both subfunctions f,.(0y and f..{1) are
symmetric, f is said to be x-symmetric.

An arbitrary symmetric function f is z-symmetric
for any € X since its subfunctions f..c0y and f;.q1)
are also symmetric, but z-symmetric functions are not
always symmetric. Note that if f is z-symmetric, the
subfunction f,.;0,1} is symmetric as well as f;.ro; and
fat:{l}'

3. Minimization Theorem of z-Symmetric Func-
tions

Nishitani and Shimizu[6] gave the minimization the-
orem for arbitrary functions, which characterizes the
number of product terms of minimum ESOPs. This the-
orem allows us to construct a minimization algorithm
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for arbitrary functions straightforwardly. However, in
order to minimize the ESOP for an n-variable function,
the algorithm must compute the minimum ESOPs of all
(n—1)-variable functions, so it works only for functions
with at most 5 variables, practically.

In this section, we give a similar theorem limited
to z-symmetric functions. From it, we can also obtain
a minimization algorithm for z-symmetric functions.
Since it does not need to compute minimum ESOPs
for all (n—1)-variable functions, it is a faster algorithm.
The following is the minimization theorem given in [6].
Theorem 1 (Minimization Theorem): Let F?~! be
the class of all (n — 1)-variable functions. For an n-
variable function f and a variable x, the following equa-
tion holds.

T(f) =ger.n7__i'p_l{7-(fz:{0} 2 g) + T(.fz:{l} s> g) + T(g)}

Note that f;.(0) © g, fr.(1} D ¢, and g are (n — 1)-
variable functions. Since a minimum ESOP of a 1-
variable function is easily obtained, it is possible to
compute a minimum ESOP of an arbitrary n-variable
function by applying the equation in Theorem 1 recur-
sively.

However, as described above, this algorithm must

minimize the functions, f,.;0y ®9, fz:{1} P g, and g, for
all (n—1)-variable functions g € 7™~ . The cardinality
of F™=1 is 22" This makes it practically impossible
to minimize functions with more than 5 variables. Then
we try to reduce the class by limiting to z-symmetric
functions and obtain the following theorem.
Theorem 2 (Minimization Theorem for z-Symmetric
Functions): Let P™~! be the class of the representative
functions of all P-equivalence classes of (n — 1)-variable
functions. For an n-variable z-symmetric function f,
the following equation holds.

T(f) = min_l{T(fm:{O} 2] g) + T(fl‘:{l} @g) + T(g)}
geP”

Proof: From Theorem I, there exists an (n — 1)-
variable function ¢’ such that 7(f) = 7(fz.q0) D ¢') +
T(fr:(1) @ ¢') + 7(g'). Let g be the representative func-
tion of the P-equivalence class including ¢’ and let = be
a permutation such that 7(g) = ¢’. Then, since f;.(0}
and f;.(1) are symmetric, the following equations are
obtained from Property 2: T(fzz{o} g = T(f$:{0} P
7(g)) = T(fo:40} ®9)s T(f2:(1} B 9) = T(fa:(1y ©7(g)) =
T(fe:(1) @ ¢'), and 7(g9) = 7(n(g)) = 7(¢'). Hence, we
have T(.f) = 7'(fz:{O} 2] g/) + 7-(fac:{l} 2] gl) + T(g,) =
T(fe:{0) @ 9) + T(fo:{1y © 9) + 7(9). o

Since any symmetric function is z-symmetric, this
theorem allows us to construct a minimization algo-
rithm for symmetric functions, that is, a minimum ESOP
for a symmetric function can be obtained by computing
minimum ESOPs of f..c0y © g, fz:{1} © ¢, and g only
for every g € P*~1. Note that minimum ESOPs for
ooy @9, fo:q1) @ g, and g are obtained from the algo-
rithm based on Theorem [ since they are not symmetric
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functions in general. The algorithm based on Theo-
rem 2 is faster than that based on Theorem 1 because
[P~ < |F"1|. However, the cardinality of P! is
not enough small to minimize symmetric functions with
6 variables.

To derive a more efficient algorithm for z-
symmetric functions, we generalize the equation in The-
orem 2. Let f be an n-variable function. We have
the following four expansions for an arbitrary (n — 1)-
variable function g.

f=2([e40129) D 2(fo:(1)©9) S (foy D 9)
= 2(fo.} ® 9) B 2(f2:001) D 9) D (farf0} © 9)
= Z(fa:401} © 9) @ 2(fo.; ©9) D (fo:(1) D 9)
= (fr:1) © 9) ® 2(fr:00} D 9) ® (22401} D 9)

For each expansion above, we have the inequality
T(f) £ X rC B, res T(fe:r B g), where SC B = {0,1}.
Hence, 7(f) £ mingcp{d>rcp, resT(fur ® 9)}-
Then, we have the following corollary.

Corollary 1 Let B = {0,1}. For an n-variable z-
symmetric function f, the following equation holds.

m(f) = min {min{ > r(fmr®9)}} (D)

RC B, R+S

The minimization algorithm based on the above
equation is less efficient than that based on Theorem 2
because it minimizes four (n — 1)-variable functions for
each g. However, in the next section we derive an effi-
cient algorithm from this equation.

4. Simplification of z-Symmetric Functions

The computing time of the algorithm based on Theo-
rem 2 depends mainly on the number of functions in
Pr-1. Although [P*7!| £ |F™~!|, with increasing n,
it requires very large computing time practically, and
it is difficult for this algorithm to minimize a symmet-
ric function with 6 or more variables. Therefore, we
attempt to reduce the class P"~! to some subclass.

In [2], an approach to reduce the class "1 to the
subclass Tk""l was presented. '];"_1 denotes a class of
all (n — 1)-variable functions f with 7(f) £ k, where
k is a nonnegative integer. The algorithm with 7;”‘1
is denoted by A[T;]. In general, it is a simplification
algorithm, i.e., it does not always guarantee the mini-
mality because ’Z}c"_l g.’F"—l. However, the algorithm
A[Ty] has the following properties, where o (f) denotes
the number of products of an ESOP for f obtained by
ATL),

1. op(f)=7(f) if 7(f) < 3(k+1).
2. ox(f) = 7(f) if on(f) £ 3(k+1).

The above approach can be applied to P"~!. Let
Pr be a class of all n-variable functions f in P™ such
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that 7(f) < k, where k is a nonnegative integer. By sub-
stituting Py~ and ok (fz:rDg) for P*7! and 7(fz-rPg)
in the Eq. (1) of Corollary 1 respectively, we define py
as follows.

Pk(f) = min_l{min{ Z Uk(fI:R@g)}}
geP; ™t SEB RC B, R%S

From the equation p, we can compute ESOPs for
z-symmetric functions if all functions in ’P,?_l are gen-
erated efficiently or pre-computed. The simplification
algorithm based on pj, is denoted by A[P,]. Note that
A[Py] calls A[T;] to obtain ESOPs for (n — 1)-variable
functions f..r @ g because they are not symmetric func-
tions in general. The simplification algorithm A[Py] is
faster than A[T;] because [P~ < |T;*!|. As well as
AlT;], A[Px] guarantees the minimality for some sub-
class of z-symmetric functions.
Theorem 3 Let k be a nonnegative integer and f be
an z-symmetric function. p(f) has the following prop-
erties.

L pe(f) = 7(f) i 7(f) <3(k+1)
2 o) = (f) i pu(f) £ 3(k +1)

Theorem 3 can be proved in a similar way to
the theorem of o (f) proved in [2]. The value pi(f)
is the number of products of ESOPs obtained by the
simplification algorithm A[Py]. Therefore, the prop-
erty | of Theorem 3 shows that A[Px] computes a min-
imum ESOP for any z-symmetric function f such that
7(f) < 3(k + 1), and the property 2 guarantees that if
the number of product terms of the ESOP obtained by
A[Py] is at most 3(k + 1), it is minimum.

5. Minimum ESOPs for 6-Variable Symmetric
Functions

The algorithm A[P;] was implemented in C language
and it was applied to all 6-variable symmetric functions
on Sparc Station 10 (CPU: SuperSparc 50 MHz). The
program obtained their minimum ESOPs. In this im-
plementation, minimum ESOPs for 5-variable functions,
which may not be symmetric, are computed by the sim-
plification algorithm A[7;]. The classes P} were pre-
computed.

Table 1 shows the computing time of A[P;] (k £ 4)
for a 6-variable symmetric function in the worst case.
For 7-variable symmetric functions, A[Px] with & < 1
is available. Table 2 shows minimum ESOPs for 6-
variable symmetric functions. In Table 2, the representa-
tive functions of symmetric-L-equivalence classes [4], [5]

Table 1 Computing time for a 6-variable symmetric function
in the worst case (second).

A[Po] A[Pi] A[P] A[Ps] A[P4]

0.039 0.21 4.4 1152 2591.3
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are presented and the other functions are omitted. The
functions are written in value vectors. For an n-variable
symmetric function f, let v;(f) be the output value of
f on the input such that the number of variables with
value 1 is equal to i. The value vector of f is the vec-
tor of v;(f)’s: [vo(f),v1(f), -+, va(f)]. Nishitani and
Shimizu [6] gave the table of 7( f) of all 5-variable sym-
metric functions and Koda and Sasao[4],[5] presented
the results for 6-variable symmetric functions obtained
by the simplification algorithm EXMIN2, which does
not guarantee the minimality. The minimality of the
ESOPs in Table 2 is guaranteed.

Our algorithm A[P;] with k = 4 computed the min-
imum ESOPs for all 6-variable symmetric functions ex-
cept three functions {0,1,1,0,1,1,0], {1,1,0,1,1,0,1], and
[1,0,1,1,0,1,1]. Minimum ESOPs for the three functions
were obtained by A[Ps] though not all functions in
P2 were checked. Since ESOPs for these functions f
obtained by A[P,] have 16 products, we can conclude
that 7(f) = 15 from the property 1 of Theorem 3. On
the other hand, since A[Ps] obtains their ESOPs with
15 products when checking functions in P55, we have
7(f) £ 15. Therefore these three ESOPs with 15 prod-
ucts are minimum.

6. Conclusion

In this paper, we characterized minimum ESOPs for
z-symmetric functions in terms of their subfunctions,
and presented the algorithm A[Py] with parameter k
to minimize or simplify ESOPs of z-symmetric func-
tions. This algorithm guarantees that it computes a
minimum ESOP for an arbitrary symmetric functions
f with 7(f) < 3(k + 1) and that a simplified ESOP is
minimum when the number of product terms in it is
at most 3(k + 1). Minimum ESOPs for all 6-variable
symmetric functions were obtained by this algorithm.
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Table 2 Minimum ESOPs for 6-variable symmetric functions.

7(f) function minimum ESOP
0 | [0,0,0,0,0,0,0] = 0
1| (1,0,0,0,0,0,0] = ZeT5T4Z3T2T1
2| [1,1,1,1,1,1,0) = zexsrazawax) P1
3 [0,1,1,1,1,1,0 = TgZT5T4T3%2T1 B xexsrgxzzrox) H1
6 | [0,1,0,0,0,0,0] = ZeZ5TaZ3x2 ® TeT5TaT321 D TeT5TaTaT1 O TeTsF3Z2T1 @ Tex5TaT3T271 D 26T5T4T3T271
[1,1,0,0,0,0,0] = Z6T5T4Z3r201 B TeT5E4T3 P T6T5T4T2T1 P TeT3T3T2T1 D Tex5T4T3T271 D T6T5T4T3727)
7 | [1,0,1,0,1,0,0] = zexsz4x32221 D26 D5 DTa DT3P T2 DT
[1,0,0,0,0,1,0] = ZeZ5Z4T3T2E1 B Tew5T4T3T2T1 D TeT5T423T2T) D TeT5Ta42T2T1 D TeT5TaT3T2 D TeT5T4T3T1 D
TeT5T3T2T]
8 | [0,0,1,0,1,0,0] = T6Z5T4T3T2T1 B TexT52423L221 DLe DT3P 24 P23 D2 BT
[1,0,1,1,1,1,0] = ZeZ5ZaT3x271 P T6T5T4Ts O T6T5T4T2T1 D T6T5T3T2T1 O Tex5T4T3%2T1 B TeT5T4T3T2T1 D
T5T4ZT3T2%1 D1
11 | [0,0,1,0,0,0,0] = ZZT5Z4F3 P TeTsToZ1 B TersTarsiary @ TersTaZ3x2T1 © TeTaZz © TeTsZ1 O T6TsTaT1 D
TeT5Z3T2 D T6T5T4T3T2T1 B TsTax3x2T1 © TsxaZ3T221
[1,0,1,0,0,0,0] = TeTs5E4Z3 D TeTsxaxafa®) O TexsTax3Ta O TewsTaT3T1 O TeTaZax1 O TeZT3x2T1 D T6T5T4T1 D
T6T5T3Z2 D TeT5TaT3T2T1 D T5Tax3x2Z1 B T524T3T2L1
12 | 0,0,0,1,0,0,0] = Zexs5z421 PTer523BTew4T2PTe130221D26T5T4T1Dr6T5T2DT6T4T3DT6T3T2T1DT5T4T322710
T5T4x3T20)1 P T5T4T3T2T1 D T5T423T27)
[0,1,0,1,0,0,0] = xex5T4z221 DrexsTax3r2 P TeT5T423T1 PTeT5T3T221 B TeT42322T1 DT D T5T4T3T271 B T5 D
z4 D3 Dr2 D21
[0,0,1,1,0,0,0] = Z6Z5T2 P T6TaZ3 Drex5T42372T1 L6522 O TeTax3 D21 ® T5T4T1 DT57aT1 DT523 O T472 D
T3T2Z1 D x3x22]
(1,1,0,0,0,1,0] = ZeZsZ4Z322%) D TeT5T4T3 O TeTsTaT2F1 O TelsT3T2T1 D TeTsTeT3ToZ1 O Tex5T4T3T221 D
TeZT5T4T3%271 D T6T5T4T3T2T1 D TeT5L422%1 D TeT5T4T3T2 D TeLs52423T1 D TeT5I3T 211
[0,1,1,0,0,1,0] = Z6Z5T2 P F6TaF3 Drer52423%271 DTex522 D 67473 DTeT1 B T5T4T1 D T5747) DT5T3 DTaT2 D
Z3x2%1 @ w3Z27) ]
(1,0,1,0,1,1,0] = zex5Z422%1 O TeT5Tax3T2T1 D TeT5T4T3 DTex5T32271 D T6T4T3T2T1 D T6 DT5T423T271 DT D
T4 Dz3 D2 DT
[1,0,1,0,0,0,1] = ZeZ5T4T3 D TeT52T4T3T2T1 D TeT5T4T3T2 D Tew5TaT3T1 P TeZaTaz) B TeTazed1 © x6T5L4T1 D
T6T5T3T2 D Tex5TaT3T2T1 D TeTsL4T3T2X1 D TsT4T3L2T1 D Tsx4T3T221
[1,1,1,0,0,0,1] = Ze&5T4T3 B TeZ523T2T1 D TexsTaTa O TersTzTo®1 O Telaz3Tox) @ TexaZsl1 O r6T5TaT1 O
TeE5T3T2 D Tex5TaT3x221 D TeTaT3T2T1 D T5T4x3x2Z1 D TswaT3T22
13 | [1,0,0,1,0,0,0] = ZeZ5T4Z3Z2%1 B TexTsxaz1 D TexsT3 B Texaxs O Tezarox) O T6T5T4T1 O w6TsT2 O T6T4T3 @
T6ZT3T2T1 D TsxaT3x2T1 © T5T423T271 D T5T4T3T221 D T5Tax3T2T1
[1,1,0,1,0,0,0] = TeT5T4E3T2E) P rewsTaZox) D TeL5La23%2 O TexsT123L1 D TeT5T322T1 D TeraT3T221 D T6 D
T524232221 x5 Drga Dz D e D1
[1,0,1,1,0,0,0] = Z¢F574T3%2%) BTeT5T2 DT6T4T3DT6T5T4T3T271 DT6T5T2DT6T4T3 BT6T1 DE5TaT1 DT5T421 D
z5r3 O xax2 G T3T2Z1 O x32271
[0,1,1,0,1,0,0] = T6T5ZaZzxox) @ TeZ5T4%3 O TeT5T4T2T1 D TeTsT3T2%1 D T6T4T3T2T1 D Te O TeT5T4T3T2T1 @
T5TaZ3T2T) s Dra D3 D2 D I1
[1,1,1,0,1,0,0] = ZeZs5Z4Z3x2 D TeT5T4T3x1 D TeZT5T4T2%1 D TeT5T3T271 D T6ZT4Z3T2T1 D Te D T6T5T4T3T2T1 B
T5Z4T3%2%1 D5 Dra D3 D2 P Ty
(1,1,1,0,0,1,0] = ZeZs5T4Z3E2%) DTeL5T2DE6T1T3 Drex5x4232271 D522 BTeT4T3PTeT1 DT5TaT1 PrsraT1 D
T5T3 D TaT2 G T3x2Z1 D T3T221
14 | [0,1,0,0,1,0,0] = ZeTs5TaZsx) DTeT5x4T3T2E1 PTers5T4x372 ®Tex52221 B T62403T221 B TeT5T2 DTeT5T4T221 D
TeT523T2 D T6T4T1 D TeT3T2T1 D T5T4X3T2T1 D Tsx4T3%1 D T5T4T3T1 D TaZ32
[1,1,0,0,1,0,0] = Z6T5T4%) BT6T50423T201DT6T5T3T2 BT6T5T4T3DTeT5T4T2T1 BT6T5T4T3T2T1 DT6T5T3T2T1D
TeT4Z1 D T6x3T2 D L5741 D Tsr3r2 O T4T3T1 O Tax2T1 D T4T3T27)
[1,1,1,0,1,1,0] = ZeZ52423T2DT6TsE321DT6T5T4T372DT6T4T221DT6T5T42302DT6T5T4T3T2 PreTsT4L3L2T1 P
262523%1 O T6T422T1 D T5Tax1 D T572%1 O T473T1 © T3Z2x1 S 1
[1,1,0,0,1,0,1] = ZeT5Zaxaxaw1 D TedsTs @ TeT5T3T D Te2T5T4T3T2 @ TeT574T3T1 D TeT5T4T2T1 D TeT3T2T1 D
TeT1 D TsT1 O T5x3T2T) D T4T3T1 D Tawz D raxzZoxr: O T3x2T1
15 | [0,1,1,0,1,1,0] = TeZ5%4 B Texsraxazory D TersTszaZy O TeraTzTor1 O TeraTeZ1 ® reTsrsTi D TeTsrz @
TEXL5T4T3T2T1 D 26T4T3T2 D TeTaT1 D T5T4T2T1  T5T4T3T1 D T5T4T3T2 O T4 D x3x221
[1,1,0,1,1,0,1] = Z6Z5Z4T2%1 @ TeT524%3%1 D Tex5T4T3T2 O T6x5T4 D TeT3T2T1 B TeT5T4 D TeT5T4T3T2T1 D
T6T5Z312T1 D T6T4Z3T2T1 D TeT3T2T1 D Tsx3x1 D Tsx2 O T5T4T3T2T1 D Taz3w2 B Tax1
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